

High Precision Bearings for Printing Machinery

SCHAEFFLER

Foreword

High precision bearings for printing machinery	Printing machinery bearings are used in the bearing arrangements of the main cylinders in sheetfed and webfed printing machines. Due to their load carrying capacity, rigidity, accuracy and precise adjustability, they provide excellent support for the central require- ment in printing machinery, namely the highest possible print quality.
	The bearings are specially designed for each application in close partnership between printing machinery manufacturers and our Application Engineering functions. As a result, the bearings are precisely matched to the requirements of the customer. This matching of design to the specific machine concept is particularly important, since exceeding requirements is a drain on resources and failing to meet requirements leads to impaired performance. Finding the optimum solution, however, is not always easy. Due to its considerable experience in the development, design and manufacture of bearings, the Schaeffler Group has the know- how necessary to always offer the best solution for an application in this complex bearing sector. Furthermore, it is able to do so in both technical and economic terms.
Extensive range for the highest print quality	Due to the wide range of requirements, standardisation of printing machinery bearings is only possible to a limited extent. The range therefore comprises a large number of types and sizes.
	In addition to the classic multi-row, high precision cylindrical roller bearings NN, NNU, N4N, N4U, use is also made of non-locating bearing units with and without eccentric geometries, locating bearing units, polygon bearings, combined linear and rotary bearing units and tapered roller bearing units. The bearings are available with and without seals. The bearing seat for the cylinder journal can be of a cylindrical or tapered design.
	Printing machinery bearings are cost-effective bearing arrangement systems that can be used to achieve the demands of the print industry for high productivity, low maintenance costs and excellent print quality.
Current level of technology	Technical Product Information TPI 222 replaces publication LFD from Schaeffler Group. The data in the catalogue represent the current level of technology and manufacture as of January 2014. They reflect not only progress in rolling bearing technology but also the experience gathered in practical use.
	Any information in previous publications that does not concur with the data in this TPI is therefore invalid.

Contents

	Page
Product index	4
Technical principles	8
Radial bearings for printing machinery	58
Axial bearings for printing machinery	98
Other products	108
Appendix Addresses	120
Design brief for cylinder bearing arrangements in printing machinery	123

Product index

	Pa	age
DMF	Printing machine bearing unit, locating bearing, radial cylindrical roller bearing with cage and rib-guided rolling elements, double row, axial bearing washers with axial needle roller and cage assemblies	61
DML	Printing machine bearing unit, non-locating bearing, radial cylindrical roller bearing with cage and rib-guided rolling elements, two, three or four rows of rolling elements	61
DML3D	Printing machine bearing unit, non-locating bearing, eccentric intermediate and outer ring, radial cylindrical roller bearing with cage and rib-guided rolling elements, two, three or four rows of rolling elements, swivel bearing with rib-guided rolling elements	63
DML3E	Printing machine bearing unit, non-locating bearing, eccentric intermediate ring, concentric outer ring, radial cylindrical roller bearing with cage and rib-guided rolling elements, two, three or four rows of rolling elements, swivel bearing with rib-guided rolling elements	62
DMLD	Printing machine bearing unit, non-locating bearing, two eccentric intermediate rings, concentric outer ring, radial cylindrical roller bearing with cage and rib-guided rolling elements, two, three or four rows of rolling elements, two swivel bearings with full complement roller sets	63
DMLE	Printing machine bearing unit, non-locating bearing, eccentric outer ring, radial cylindrical roller bearing with cage and rib-guided rolling elements, two, three or four rows of rolling elements	62
N4N	Radial cylindrical roller bearing with cage and rib-guided rolling elements, four rows of rolling elements, ribs on inner ring	61
N4U	Radial cylindrical roller bearing with cage and rib-guided rolling elements, four rows of rolling elements, ribs on outer ring	61
NN30	Radial cylindrical roller bearing with cage and rib-guided rolling elements, two rows of rolling elements, ribs on inner ring	61
NNU49	Radial cylindrical roller bearing with cage and rib-guided rolling elements, two rows of rolling elements, ribs on outer ring	61

		Page
TBS	Printing machine bearing unit, locating bearing, tapered roller bearing with single-piece, thick-walled outer ring, two rows of rolling elements	62
TR2	Printing machine bearing unit, locating bearing, matched single row tapered roller bearings in O arrangement with intermediate rings	62
ZARA	Axial cylindrical roller bearing, double direction, externally centred	100
ZARI	Axial cylindrical roller bearing, double direction, internally centred	100
ZAXA	Axial needle roller bearing, double direction, externally centred	100

0001871F

00018720

Technical principles

High precision bearings for printing machinery Load carrying capacity and rating life Rigidity Friction and increases in temperature Lubrication Sealing Bearing data Design of bearing arrangements Mounting and dismounting

Technical principles

	Page
High precision bearings for printing machinery	Requirements
	Advantages of printing machinery bearings 13
Load carrying capacity and	Determining the bearing size14
rating life	Design of the bearing arrangement using ${\sf BEARINX}^{\textcircled{R}}$
	Rating life of printing machinery bearings 15
	Expanded adjusted rating life 15
	Operating clearance 16
Rigidity	Influence on the bearing arrangement 17
	Radial rigidity of three-ring and four-ring bearings 17
	Radial rigidity of tapered roller bearings
	Limits on preload 18
Friction and increases in temperature	Friction
	Determining the friction values
	Printing machinery bearings with operating clearance
	Swivel bearings – three-ring and four-ring bearings
Lubrication	Principles
	Oil lubrication
	Arcanol rolling bearing greases
	Graduated range
	Selection of rolling bearing grease
	Lubricators 25

Technical principles

	Р	Page
Sealing	Function of seals Influence on operating life and wear	
	Non-contact and contact seals	26
	Design of seals	27
	Swivel bearings – three-ring and four-ring bearings	27
Bearing data	Geometrical tolerances Tolerances for tapered bores Radial bearings of tolerance class P5, excluding tapered roller bearings Radial bearings of tolerance class P4, excluding tapered roller bearings Radial bearings of tolerance class SP with tapered bore Tapered roller bearings of tolerance class P5 Axial bearings	29 30 31 32 34
	Radial internal clearance Radial internal clearance of bearings with cylindrical bore	
Design of bearing arrangements	Requirements for the adjacent construction Axial location of printing machinery bearings	38
	Shaft and housing tolerances Tolerances of side wall bore Tables of shaft and housing tolerances	38
	Geometrical tolerances of bearing seating surfaces Accuracy of bearing seating surfaces Roughness of bearing seats	42
	Values for IT grades	43

	F	Page
Mounting and dismounting	Mounting guidelines	. 44
	Delivered condition and storage	. 44
	Removal from packaging	. 44
	Mounting methods Supercooling of bearings Pressing into place at room temperature	. 44
	Dismounting	. 45
	Clearance adjustment of cylindrical roller bearings Mounting procedure for cylindrical roller bearings Setting the clearance without a gauge	. 45
	Industrial mounting service Equipment rental	
	Measurement and inspection of high precision bearings Enveloping circle gauge MGI21 Enveloping circle gauge MGA31 Snap gauge SNAP-GAUGE Taper gauge MGK133 Taper ring gauges KLR	. 49 . 50 . 51 . 52
	Hydraulic mounting and dismounting of high precision bearings Hand pumps Hydraulic nuts	. 54

High precision bearings for printing machinery

Requirements Printing machinery bearings are used to centre plate cylinders, blanket cylinders, impression cylinders and transfer cylinders in printing machinery. This is associated with a range of requirements that must be fulfilled to the optimum possible extent by the bearings.

The accuracy of the cylinder bearing arrangement has a decisive influence on the print quality output. Printing machinery bearings must ensure that the cylinders in the print process work together to the optimum degree. There must be no relative motion in a radial or axial direction. The bearings are therefore subject to high demands in terms of freedom from clearance, rigidity and runout quality. Furthermore, it must be possible to move the plate or form cylinders axially in a controlled manner and, depending on the machine type, to achieve oblique adjustment (diagonal register function).

Changing the centre distances in the printing press

In order to carry out printing machine functions such as on-pressure, off-pressure or compensating for different paper thicknesses, it must be possible to change the centre distances of the cylinders in the printing press.

To this end, the printing machinery bearings have eccentric rings that can be swivelled through a specific angle reliably and with low friction, *Figure 1* and *Figure 2*, page 13.

Figure 1 Positioning by means of eccentric bearing rings

Figure 2 Positioning by means of eccentric bearing rings

Advantages of printing machinery bearings

Compared to standard solutions, printing machinery bearings from the Schaeffler Group have a series of advantages for the user, see table.

Advantages	Description
High accuracy	This is achieved as a result of the bearing accuracy (tolerance classes P5 or P4) and the bearing preload. As a result, the bearing arrangement is clearance-free.
High rigidity	The accuracy and the combination of bearing parts, together with bearing preload, give high radial system rigidity.
Reliable eccentric adjustment	The rolling element-based swivel bearing allows reliable, low-friction eccentric adjustment and prevents the possibility of jamming and premature wear.
Low operating temperature	Due to their construction, the bearings run with low friction. As a result, there is little heating of the bearing position.
Compact construction	The units combine all the necessary functions in one bearing. This gives saving in terms of individual parts, simplified handling and more economical logistics.
Ease of mounting	The units are particularly advantageous in this respect. Since several functions are combined in one bearing, mounting is simple and secure.

Advantages

Load carrying capacity and rating life

Determining the bearing size

Where the necessary bearing size for a bearing arrangement is to be determined, this is based in the majority of cases on the requirements for load carrying capacity, rating life and operational reliability of the bearing arrangement. In addition to these criteria, bearings for printing machinery are subject to requirements for high rigidity and freedom from clearance. In order to determine the rating life, the influence of preload in the bearing must therefore also be taken into consideration.

However, the rating life can also be influenced to a considerable extent by possible misalignment of the bearing journal, the tolerances of the components and least but not least by lubrication and contamination.

Design of the bearing arrangement using BEARINX®

For optimum design of the bearing arrangement, the engineering service of the Schaeffler Group should be consulted and the calculation software BEARINX[®] should be used, *Figure 1* and *Figure 2*, page 15. This calculation software allows highly realistic analyses even of complex bearing systems for cylinders.

In the design of three-ring and four-ring bearings, only the rotating cylindrical roller bearing is generally taken into consideration. his is the bearing subjected to the heaviest load. The swivel bearing, on the other hand, is subjected to predominantly static load.

Under the forces commonly occurring in printing machinery and while adhering to the recommended fits, the permissible static load safety factor is not achieved by a large margin. Even under high dynamic loads such as those occurring in printing machinery without bearer rings due to the so-called channel runout, the swivel bearing has demonstrated its high reliability in practice.

Figure 1 BEARINX[®] model of a bearing system for a cylinder

Figure 2 Determining the Hertzian contact pressure

Rating life of printing machinery bearings

Expanded adjusted rating life

Printing machinery bearings are normally designed for a rating life of at least 10 years. Depending on the duration of machine usage, this means 40 000 h to 60 000 h for the bearing in a rotary printing machine. Bearings for sheetfed offset printing machines are normally designed for an operating life of at least 200 million printed paper sheets. Since these machines are used very flexibly, are often retooled to accommodate a new order and are therefore operated at a wide variety of speeds, it is more appropriate to state the life as a number of printed paper sheets than in hours.

g life The calculation of the expanded adjusted rating life L_{nm} is standardised in DIN ISO 281:2010.
 The contact pressure has a decisive influence on the rating life of a printing machinery bearing.

Load carrying capacity and rating life

Operating clearance

The operating clearance s is determined on a fitted bearing still warm from operation. It is derived from the radial internal clearance and the change in the radial internal clearance as a result of interference fit and thermal influences in the fitted condition.

The thermal influence on the bearing arrangement is dependent on the machine type, bearing size, load, speed and lubrication. In order to achieve the required rating life, it is necessary to carefully determine the minimum operating clearance occurring by means of validation as representative as possible of practical conditions, *Figure 3*. Guidelines on the setting of mounting clearance, see page 45.

Cylindrical roller bearing in printing machine bearing unit DML3E

> Figure 3 Adjusted rating life as a function of operating clearance

Rigidity

Influence on the bearing arrangement

The rigidity of the complete system is influenced not only by the cylinder and the adjacent construction but also to a considerable extent by the bearing arrangement. Due to their larger contact surface, cylindrical roller bearings or tapered roller bearings have considerably higher rigidity than ball bearings. Furthermore, they can be preloaded without problems and thus operated with negative internal clearance. As a result, a further significant increase in rigidity can be achieved.

Freedom from clearance and high rigidity have a favourable influence on the vibration behaviour. This characteristic is particularly important in modern printing machinery without bearer rings. Complete freedom from clearance in the bearing position can be achieved in particular through the use of printing machine bearing units. They are therefore particularly suitable for the requirements of modern, high performance printing machinery.

Radial rigidity of three-ring and four-ring bearings

The radial rigidity of three-ring and four-ring bearings is primarily and decisively determined by the rotating cylindrical roller bearing. The rigidity of the swivel bearing is significantly higher by comparison. Since this is in mathemetical terms a set of springs connected in series, the swivel bearing contributes a comparatively low proportion of the total bearing deflection. A four-row, three-ring bearing DML3E, for example, has smaller radial displacement compared to a double row, three-ring bearing DML3E, *Figure 1*. The displacement can be reduced even further by preloading of the rotating bearing.

DML3E105×210×80

 δ = radial displacement F_r = radial bearing load

Four-row bearing
 Double row bearing
 Double row bearing, with clearance
 Double row bearing, preloaded

Figure 1 Radial displacement as a function of operating clearance and bearing type

Rigidity

Radial rigidity of tapered roller bearings

The radial rigidity of preloaded tapered roller bearings is slightly higher than that of preloaded cylindrical roller bearings. In practice, however, the differences are small and negligible. Furthermore, tapered roller bearings have a relatively high axial rigidity and can support tilting moments. Due to the high tilting rigidity, however, it must be noted that misalignment of the cylinder journal is only possible to a very limited extent.

Tapered roller bearings are highly suitable, for example, as locating bearings in sheetfed offset printing machines. The bearing unit DMF offers particularly high radial as well as axial rigidity. This is achieved by the combination of a radial cylindrical roller bearing and a double direction, clearance-free axial needle roller bearing. Due to its high axial rigidity in combination with its extremely low axial runout due to the design, this bearing unit is particularly suitable for the paper feed cylinders in sheetfed offset printing machines.

Limits on preload Preloading of bearings increases the internal forces acting on the individual rolling elements. This increases the friction and bearing temperature. Slight preload not only has a positive effect on the rigidity, but the fatigue life is also increased slightly. Above this optimum preload value, however, the rating life decreases very rapidly and there is a disproportionately large increase in both friction and bearing temperature.

Friction and increases in temperature

Friction An important characteristic of bearings for printing machinery is low frictional torque and therefore low bearing temperature. In general, the operating temperature of the bearing should not exceed +60 °C, in order to prevent any possible negative influences on the printing process.

Cylindrical roller bearings have particularly low friction and are therefore advantageous for printing machinery running at high speeds.

Influence on friction The frictional torque and bearing temperature are dependent on the following significant influences:

- bearing type
- bearing size
- speed
- load
- bearing clearance
- Iubrication
- mounting location
- sealing concept.

Lubrication has a considerable influence on the bearing temperature. With grease lubrication and in conjunction with a special smooth-running grease, significantly lower bearing temperatures can be achieved than with oil lubrication. Based on practical experience, guide values can be stated for the operating temperature of a main cylinder bearing arrangement, see table.

Operating temperature

Offset	Main bearing	Operating temperature with	
printing		Oil lubrication	Grease lubrication (optimised)
		°C	°C
Web	Tapered roller bearing	55 - 70	45 - 60
	Cylindrical roller bearing	50 - 60	35 – 50
Sheet	Tapered roller bearing	45 – 55	35 – 50
	Cylindrical roller bearing	40 - 50	30 - 40

İ

If grease lubrication is used, it must be ensured that there is not an excessive quantity of grease in the bearing, especially in the case of triple row and four-row cylindrical roller bearings. Otherwise, significantly higher bearing temperatures must be expected in printing machines running at high speeds in the first few hundred hours of operation, due to the increased amount of churning.

Care must therefore be taken in determining the quantity of grease used in initial greasing and relubrication of the specific bearing type. We recommend that the engineering service of the Schaeffler Group should be consulted on this matter.

Friction and increases in temperature

Determining the friction values

In order to determine the friction values, the speed and load must be known. The type of lubrication, lubrication method and viscosity of the lubricant at operating temperature are other factors necessary for calculation.

Printing machinery bearings The bearing friction with operating clearance calculated in approximately calculated i

The bearing friction and frictional power of printing machinery can be calculated in approximate terms.

Total frictional torque M_R:

 $M_{R} = M_{0} + M_{1}$

Frictional power N_R:

$$N_{R} = M_{R} \cdot \frac{n}{9550}$$

Frictional torque as a function of speed for $\nu \cdot n \ge 2000$:

$$M_{0} = f_{0} \cdot (\nu \cdot n)^{2/3} \cdot d_{M}^{3} \cdot 10^{-7}$$

Frictional torque as a function of speed for $\nu \cdot n < 2000$:

 $M_0 = f_0 \cdot 160 \cdot d_M^3 \cdot 10^{-7}$

Frictional torque as a function of load for cylindrical roller bearings and double row tapered roller bearings (tapered roller bearings in printing machinery applications are predominantly under radial load):

$M_1 = f_1 \cdot F \cdot d_M$
M _R Nmm
Total frictional torque
M _o Nmm
Frictional torque as a function of speed
M ₁ Nmm
Frictional torque as a function of load
N _R W
Frictional power
n min ⁻¹
Operating speed
f ₀ –
Bearing factor for frictional torque as a function of speed,
see tables, page 21
ν mm ² s ⁻¹
Kinematic viscosity of lubricant at operating temperature. In the case of grease, the decisive factor is the viscosity of the base oil at operating temperature
d _M mm
Mean bearing diameter (d + D)/2
f ₁ –
Bearing factor for frictional torque as a function of load,
see tables, page 21
F N
Radial load for radial bearings, axial load for axial bearings.

Bearing factors The bearing factors f_0 and f_1 are mean values derived from series of tests and correspond to the data given in ISO 15312, see tables. In the case of grease lubrication, they are valid for bearings after running-in and with uniform distribution of lubricant. In the freshly greased state, the bearing factor f_0 can be two to five times higher. If oil bath lubrication is used, the oil level must reach the centre of the lowest rolling element. If the oil level is higher, f_0 may be up to 3 times the value given in the table.

Bearing factors for cylindrical roller bearings with cage

Series	Bearing factor f _o		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
Double row	1,2	4,4	0,0002
Triple row	1,8	6,6	
Four-row	2,4	8,8	

Bearing factors for axial roller bearings

Series	Bearing factor f _o		Bearing factor f ₁
	Grease, oil mist	Oil bath, recirculating oil	
AXK, AXW	3	4	0,0015
811, K811	2	3	
812, K812			
893, K893			
894, K894			

Bearing factors for tapered roller bearings

Series	Bearing factor f ₀	Bearing factor f ₁	
	Grease, oil mist	Oil bath, recirculating oil	
Double row bearing (matched pair)	6	9	0,0004

Printing machinery bearings with preload

In preloaded bearings, the rolling elements are subjected to additional load. Depending on the preload level, this may lead to an increase in the frictional torque.

Friction and increases in temperature

Swivel bearings Three-ring and four-ring bearings

Swivel bearings are generally sealed by means of special toroidal rings on both sides. These are contact type seals that induce a certain amount of friction. A further amount of friction is generated by the minimal radial bearing preload. A certain level of torque is required in order to rotate the swivel bearing and this must be taken into consideration in the dimensioning of the adjustment device in the printing machine.

In modern printing machinery bearings from the Schaeffler Group, the swivel bearing is supported by rib-guided cylindrical rollers. Investigations have shown that, in printing machinery with operating temperatures $\vartheta < 45$ °C, this concept gives a consistently low frictional torque compared with cage-guided needle roller bearings, see table.

The values stated in the table are valid for the bearing unit when fitted and operating temperatures $\vartheta < 45$ °C. During the initial period, the values can be approx. 1,5 times higher, since a certain running-in period must be anticipated.

Guide values for frictional torque

Series	Diameter range D mm	Frictional torque M _R Nm
DML3E, DML3D	< 200	< 25
	>200	< 40
DMLD Inner eccentric	< 200	< 25
	>200	< 40
Outer eccentric	< 200	< 50
	>200	< 80

Higher operating temperatures

In applications with operating temperatures $\vartheta > 45$ °C and large bearing diameters, there may be a significant increase in frictional torque in the swivel bearing. For these applications, the Schaeffler Group offers not only rib-guided cylindrical rollers but also an additional cage in the swivel bearing.

When dimensioning the adjustment device, a possible increase in swivel torque during running-in or at higher operating temperatures must be taken into consideration and determined by means of tests.

Lubrication

Principles	 Bearings for printing machinery can be lubricated with grease or oil. In practice, the following arrangements are used: The drive side and tending side are lubricated using grease. The drive side is lubricated using oil, while the tending side is lubricated using grease. The drive side and tending side are lubricated using oil.
Oil lubrication	The advantage of oil lubrication is freedom from maintenance. The disadvantages are the higher friction and bearing temperature as well as more costly sealing. In general, the oil used in the drive of the printing machine is also used for lubrication of the bearings. Normally, mineral-based or synthetic gearbox oils of viscosity classes ISO VG 68, 100 and 150 are used.
Cleanliness	The cleanliness of the oil has a considerable influence on the rating life of the bearings, see section Load carrying capacity and rating life, page 14. The Schaeffler Group therefore recommends that an oil filter should be provided; attention must be paid to the filtration rate. The filter mesh should be x < 25 μ m.
Oil quantities	Large oil quantities have a considerable influence on the friction behaviour and thus on the temperature level in the bearing. In this case, we recommend consulting the engineering service of the Schaeffler Group.
Grease lubrication	 The advantages of grease lubrication are as follows: particularly low friction and bearing temperature are possible simple sealing cost-effective low system costs. The disadvantage of grease lubrication is: the risk of increased bearing temperatures if overgreasing is carried out.
Lubrication intervals	Bearings in printing machinery are often lubricated twice a year. This value is appropriate to practice, even for non-contact gap seals. In this case, the grease fulfils an additional protective function by preventing dust from entering the rolling contact zone. Where gap seals are fitted, sealing by means of grease does not give adequate protection of the bearing against external liquid media.

Lubrication

Arcanol rolling bearing greases	Starting from a larger number of lubricants, Schaeffler Group Industrial developed the range of Arcanol rolling bearing greases. These greases offer very good preconditions for favourable running behaviour of bearings and a long operating life and high operational reliability of the bearing arrangement. The area of application of Arcanol was determined under widely differing operating conditions and with rolling bearings of all types by means of modern testing methods and testing systems.						
Graduated range	The range is graduated such that almost all areas of application can be covered to an optimum extent.						lication can
For automatic or manual grease lubrication	For grease lubrication, automatic lubricators are available in the designs COMPACT, CHAMPION and CONCEPT6, filled with Arcanol greases from FAG.						
	For manual lubrication, we supply a grease gun, comprising a manual grease gun ARCA-GREASE-GUN and the matching armoured hose ARCA-GREASE-GUN.HOSE.						
Selection of rolling bearing grease	 In printing machinery engineering, two greases are used in preference, see table. For bearings in main cylinders, very high quality requirements are fulfilled using the grease MULTITOP. The universal grease for ball and roller bearings is suitable for high speeds, high loads and both low and high temperatures. It ensures full performance capability and is characterised in particular by: long operating life high operational reliability low friction behaviour. For yoke and stud type track rollers, the grease LOAD150 is used in preference. The special grease for ball, roller and needle roller bearings is suitable for high loads, a wide speed range and swivel 						
Arcanol rolling bearing greases	Designation	Thickener	Base oil viscosity at +40 °C mm ² /s	Consis- tency NLGI	Operating temperature °C °C °C		
	MULTITOP	Lithium soap	\geq ISO VG 68	2	-40	+140	+80
	LOAD150	Lithium complex	\geq ISO VG 150	2	-20	+140	+90

Containers

Arcanol rolling bearing greases are available in tubes, cartridges, cans, buckets, hobbocks and drums, see table.

Grease container sizes

Arcanol grease ¹⁾	Tube		Car- tridge		Bucket		Hobbock		Drum	
	20 g	70 g	250 g	400 g	1 kg	5 kg	10 kg	25 kg	50 kg	180 kg
MULTITOP			•	•	●	•	•	•	-	•
LOAD150	-	-	-	•	•	-	•	-	-	-

1) Other containers are available by agreement.

Lubricators

rs Automatic lubricators convey fresh grease in the defined quantity at the correct time to the contact points of the rolling bearing, *Figure 1*. The devices adhere to the lubrication and maintenance intervals and prevent undersupply or oversupply of grease. Plant downtime and maintenance costs are reduced as a result.

The lubricators are matched to the bearing position. They have a wide range of applications, for example on pumps, compressors and fans, in conveying equipment, machinery etc.

Lubricators have the following advantages:

- individually configured, precise supply to each bearing position
- fully automatic, maintenance-free operation
- reduced personnel costs compared to manual relubrication
- different dispensing times can be selected
- pressure buildup to max. 25 bar, thereby overcoming any obstructions.

Figure 1 Lubricator Motion Guard

Further information

Detailed information on automatic lubricators can be found in Catalogue IS 1, Mounting and Maintenance of Rolling Bearings.

Sealing

Function of sealsThe sealing system is intended to retain the lubricant in the bearing
and prevent the ingress of contaminants and moisture into the
bearing.
In printing machinery, the risk of contamination by solid particles is
comparatively low, so simple gap seals offer adequate protection.
These do not, however, offer adequate protection against liquids
which may, for example, be present during washing of the printing
machine. In this case, effective labyrinth seals or contact seals are
necessary.InfluenceContaminants may have various effects:

on operating life and wear A large quantity of very small, abrasive particles causes wear in the bearing. The increasing operating clearance and noise level

- then bring the operating life of the bearing to an end.Larger, overrolled hard particles lead to indentations in the raceways. This reduces the fatigue life.
- Liquid contaminants such as water or cleaning agents destroy the lubricant film. This leads to wear and corrosion.

With non-contact seals, there is no friction in the lubricant gap other than that due to lubricant friction itself. These seals are wear-free, generate no heat and can function for a long period, *Figure 1*.

Contact seals are in contact with the metallic running surface under a contact force that is normally a radial force, *Figure 2*, page 27. They allow simple and compact designs. The additional seal friction must be taken into consideration in design, especially in the case of printing machines running at high speeds.

(1) Non-contact seal

Figure 1 Non-contact sealing of the bearing

Non-contact and contact seals

1 Contact seal

Figure 2 Contact sealing of the bearing

Design of seals

Sealing of printing machinery bearings can be achieved in the adjacent construction or appropriate seals can be integrated in the bearing itself.

In seal selection, attention must be paid to:

- the type of lubrication and the lubricant
- the bearing environment
- the available design envelope
- the design work involved
- the circumferential speed at the sealing surface
- seal friction
- the temperature increase due to friction.

Swivel bearings Three-ring and four-ring bearings

In the case of printing machinery bearings, the environment must be expected to contain dust, ink, moist materials, cleaning agents and oil from the drive. For this reason, the swivel bearing must be effectively sealed as well.

With a few exceptions, toroidal contact rings are fitted on both sides that allow a particularly compact sealing arrangement. In order to achieve an optimum compromise between sealing action and frictional torque, specially treated O rings are used and close tolerances are selected.

Geometrical tolerances

Unless stated otherwise, the tolerances for radial rolling bearings in printing machinery correspond to DIN 620-2 (ISO 492), while the tolerances for axial rolling bearings correspond to DIN 620-3 (ISO 199).

The accuracy of printing machinery bearings corresponds in general to the more stringent accuracy classes P5 or P4. In some cases, functionally decisive parameters are produced to even narrower tolerances, see table, *Figure 1*, page 29 and table, page 30.

Dimensional and tolerance symbols

Dimensional and tolerance symbols	Toleranced characteristic to DIN ISO 1132 and DIN 620
d	Nominal bore diameter
Δ_{ds}	Deviation of a single bore diameter
Δ_{dmp}	Deviation of mean bore diameter in a single plane
Δ_{d1mp}	Deviation of mean large end diameter in tapered bores
V _{dsp}	Variation of single bore diameter in a single plane
V _{dmp}	Variation of mean bore diameter
D	Nominal outside diameter
Δ_{DS}	Deviation of a single outside diameter
Δ_{Dmp}	Deviation of mean outside diameter in a single plane
V _{Dsp}	Variation of single outside diameter in a single plane
V _{Dmp}	Variation of mean outside diameter
В	Nominal inner ring width
Δ_{Bs}	Deviation of a single inner ring width
V _{Bs}	Variation of inner ring width
С	Nominal outer ring width
Δ_{Cs}	Deviation of a single outer ring width
V _{Cs}	Variation of outer ring width
K _{ia}	Radial runout of inner ring of assembled bearing
K _{ea}	Radial runout of outer ring of assembled bearing
S _d	Axial runout of inner ring face to the bore
SD	Runout of outer ring outside surface generatrix to the face
S _{ia}	Axial runout of inner ring of assembled bearing
S _{ea}	Axial runout of outer ring of assembled bearing
S _i	Variation of washer thickness of shaft locating washer
S _e	Variation of washer thickness of housing locating washer
$\begin{array}{l} \Delta_{\mathrm{Ts}}\text{,} \\ \Delta_{\mathrm{T1s}}\text{,} \ \Delta_{\mathrm{T2s}} \end{array}$	Deviation in total width from nominal dimension of tapered roller bearing measured at one point

Tolerances for tapered bores

Tolerances for tapered bores of high precision cylindrical roller bearings: see *Figure 1* and page 32.

$$\begin{split} \alpha &= \text{inclination angle at end of taper} \\ &= 2^{\circ} 23' 9,4'' \\ 2\alpha &= \text{taper angle at end of taper} \\ &= 4^{\circ} 46' 18,8'' \\ & \text{B} &= \text{width of inner ring} \\ & \text{d} &= \text{nominal bearing bore diameter} \\ & \text{d}_1 &= \text{bore diameter at large end of taper} \\ & \Delta_{dmp} &= \text{deviation of bore diameter from} \\ & \text{nominal dimension in a single radial plane} \end{split}$$

Figure 1 Tolerances for tapered bores

Bearing data

Radial bearings of tolerance class P5, excluding tapered roller bearings

Tolerances P5 for inner ring

The dimensional and geometrical tolerances of radial bearings of tolerance class P5 with a cylindrical bore are in accordance with DIN 620-2 (ISO 492), see tables. The tolerances for tapered roller bearings are presented separately, see page 34.

d		Δ_{dmp} Deviation		V _{dsp} Diameter series		V _{dmp}	K _{ia}	S _d
mm				9	0, 1, 2, 3, 4			
over	incl.	upper	lower	max.	max.	max.	max.	max.
50	80	0	-9	9	7	5	5	8
80	120	0	-10	10	8	5	6	9
120	180	0	-13	13	10	7	8	10
180	250	0	-15	15	12	8	10	11

Tolerances P5 for inner ring (continued)

d		Δ_{Bs}	V _{Bs}	
mm		Deviation		
over	incl.	upper	lower	max.
50	80	0	-150	6
80	120	0	-200	7
120	180	0	-250	8
180	250	0	-300	10

Tolerances P5 for outer ring

D		Δ_{Dmp} Deviation			V _{Dsp} Diameter series		K _{ea}	S _D	V _{Cs}
mm				9 0, 1, 2, 3, 4					
over	incl.	upper	lower	max.	max.	max.	max.	max.	max.
50	80	0	-9	9	7	5	8	8	6
80	120	0	-10	10	8	5	10	9	8
120	150	0	-11	11	8	6	11	10	8
150	180	0	-13	13	10	7	13	10	8
180	250	0	-15	15	11	8	15	11	10
250	315	0	-18	18	14	9	18	13	11
315	400	0	-20	20	15	10	20	13	13

 Δ_{Cs} is identical to Δ_{Bs} for the inner ring of the corresponding bearing.

 Applies before assembly of the bearing and after removal of internal or external snap rings.

Radial bearings of tolerance class P4, excluding tapered roller bearings

Tolerances P4 for inner ring

The dimensional and geometrical tolerances of radial bearings of tolerance class P4 with a cylindrical bore are in accordance with DIN 620-2, see tables.

d Δ_{dm}		$\Delta_{\rm dmp}$	Δ_{dmp}		$\Delta_{\sf ds}$		V _{dsp}		K _{ia}
				Diamet	er series				
				0, 1, 2, 3, 4		9	0, 1, 2,		
mm		Deviatio	on	Deviation			3,4		
over	incl.	upper	lower	upper	lower	max.	max.	max.	max.
50	80	0	-7	0	-7	7	5	3,5	4
80	120	0	-8	0	-8	8	6	4	5
120	180	0	-10	0	-10	10	8	5	6
180	250	0	-12	0	-12	12	9	6	8

Tolerances P4 for inner ring (continued)

d		S _d	Δ_{BS}	V _{Bs}	
mm			Deviation		
over	incl.	max.	upper	lower	max.
50	80	5	0	-150	4
80	120	5	0	-200	4
120	180	6	0	-250	5
180	250	7	0	-300	6

. .

...

14

Tolerances P4 for outer ring

D		Δ_{Dmp}		Δ_{Ds}		V _{Dsp}		V _{Dmp}	K _{ea}
				Diamet	er series				
				0, 1, 2, 3, 4		9	0, 1, 2,		
mm		Deviatio	on	Deviatio	on		3,4		
over	incl.	upper	lower	upper	lower	max.	max.	max.	max.
50	80	0	-7	0	-7	7	5	3,5	5
80	120	0	-8	0	-8	8	6	4	6
120	150	0	-9	0	-9	9	7	5	7
150	180	0	-10	0	-10	10	8	5	8
180	250	0	-11	0	-11	11	8	6	10
250	315	0	-13	0	-13	13	10	7	11
315	400	0	-15	0	-15	15	11	8	13

Tolerances P4 for outer ring (continued)

D		S _D S _{D1}	Δ_{Cs}	V _{Cs}
mm		S _{D1}		
over	incl.	max.		max.
50	80	4	Δ_{Cs} and V_{Cs} are identical to Δ_{Bs} and V_{Bs}	3
80	120	5	for the inner ring of the corresponding bearing	4
120	150	5		5
150	180	5		5
180	250	7		7
250	315	8		7
315	400	10		8

Bearing data

Radial bearings of tolerance class SP with tapered bore

The dimensional and geometrical tolerances of radial bearings of tolerance class P5 with a tapered bore are valid for the series NN30 and NNU49, see tables and *Figure 1*, page 29.

Tolerances SP for inner ring

μm μm
pun pun
2,5 0 -120
3 0 -120
4 0 -150
4 0 -200
5 0 -250
6 0 -300

Tolerances SP for inner ring (continued)

d V _{dp}		V _{dp}		V _{dmp}	$\Delta_{d1mp} - \Delta_{dmp}$		K _{ia}	S _d	S _{ia}
mm		μm		μm	μm		μm	μm	μm
		Bore							
over	incl.	Cylindrical	Tapered						
18	30	3	3	3	4	0	3	4	4
30	50	4	4	4	4	0	4	4	4
50	80	5	5	5	5	0	4	5	5
80	120	5	5	5	6	0	5	5	5
120	180	7	7	7	8	0	6	6	7
180	250	8	8	8	9	0	8	7	8

Tolerances SP for outer ring

D		$\Delta_{\rm Ds,} \Delta_{\rm Dmp}$	V _{Dp}	
mm				μm
over	incl.			
30	50	0	-7	4
50	80	0	-9	5
80	120	0	-10	5
120	150	0	-11	6
150	180	0	-13	7
180	250	0	-15	8
250	315	0	-18	9
315	400	0	-20	10

The width deviation Δ_{Cs} is identical to Δ_{Bs} of the corresponding inner ring.

Tolerances SP for outer ring (continued)	

D		V _{Dmp}	V _{Cs}	K _{ea}	SD	S _{ea}
mm		μm	μm	μm	μm	μm
over	incl.					
30	50	4	2,5	5	4	5
50	80	5	3	5	4	5
80	120	5	4	6	5	6
120	150	6	5	7	5	7
150	180	7	5	8	5	8
180	250	8	7	10	7	10
250	315	9	7	11	8	10
315	400	10	8	13	10	13

Bearing data

Tapered roller bearings of tolerance class P5

Tapered roller bearings with tolerances to tolerance class P5 correspond to DIN 620-2, see tables.

Tolerances P5 for inner ring

d		Δ_{dmp}		V _{dp}	V _{dmp}	K _{ia}
mm		μm		μm	μm	
		Deviation				
over	incl.	upper	lower	max.	max.	max.
10	18	0	-7	5	5	5
18	30	0	-8	6	5	5
30	50	0	-10	8	5	6
50	80	0	-12	9	6	7
80	120	0	-15	11	8	8
120	180	0	-18	14	9	11
180	250	0	-22	17	11	13

Tolerances P5 for inner ring (continued)

d		Δ_{Bs}		Δ_{TS}		
mm		μm		μm		
		Deviation				
over	incl.	upper	lower	max.	min.	
10	18	0	-200	+200	-200	
18	30	0	-200	+200	-200	
30	50	0	-240	+200	-200	
50	80	0	-300	+200	-200	
80	120	0	-400	+200	-200	
120	180	0	-500	+350	-250	
180	250	0	-600	+350	-250	

Tolerances P5 for outer ring

D		Δ_{Dmp}		V _{Dp}	V _{Dmp}	K _{ea}
mm		μm		μm		μm
		Deviation				
over	incl.	lower	upper	max.	max.	max.
18	30	0	-8	6	5	6
30	50	0	-9	7	5	7
50	80	0	-11	8	6	8
80	120	0	-13	10	7	10
120	150	0	-15	11	8	11
150	180	0	-18	14	9	13
180	250	0	-20	15	10	15
250	315	0	-25	19	13	18
315	400	0	-28	22	14	20

Axial bearings

Bore diameter tolerances for shaft locating washers

The dimensional and geometrical tolerances of axial bearings of tolerance class P5 or PN with a cylindrical bore are in accordance with DIN 620-3 (ISO 199), see tables.

d		PN, P6 and P5	PN, P6 and P5			
		Δ_{dmp}	V _{dp}			
mm		μm		μm		
		Deviation				
over	incl.	upper	lower	max.		
-	18	0	-8	6		
18	30	0	-10	8		
30	50	0	-12	9		
50	80	0	-15	11		
80	120	0	-20	15		
120	180	0	-25	19		
180	250	0	-30	23		
250	315	0	-35	26		
315	400	0	-40	30		

Outside diameter tolerances for housing locating washers

D	D		PN, P6 and P5				
		Δ_{Dmp}	Δ_{Dmp}				
mm		μm		μm			
		Deviation					
over	incl.	upper	lower	max.			
10	18	0	-11	8			
18	30	0	-13	10			
30	50	0	-16	12			
50	80	0	-19	14			
80	120	0	-22	17			
120	180	0	-25	19			
180	250	0	-30	23			
250	315	0 -35		26			
315	400	0	-40	30			

Variation of washer thickness
for shaft and housing
locating washers

d		S _i			S _e
		PN	P6	P5	PN,P6, P5
mm		μm	μm	μm	
over	incl.	max.	max.	max.	
-	18	10	5	3	Identical
18	30	10	5	3	to S _i for the shaft locating
30	50	10	6	3	washer of the
50	80	10	7	4	correspon-
80	120	15	8	4	ding bearing
120	180	15	9	5	
180	250	20	10	5	
250	315	25	13	7	
315	400	30	15	7	

Bearing data

Radial internal clearance

Printing machinery bearings are designed with slight internal clearance. It is thus possible to achieve the required bearing clearance or bearing preload after mounting.

Printing machine bearing units with a tapered inner ring bore that are set to preload during mounting normally have the internal clearance C1, see table. The internal clearance C1 is smaller than C2 to DIN 620-4.

In bearing applications with a small bearing mounting clearance, a radial internal clearance that is different from and slightly larger than C1 may be necessary.

Radial internal clearance of bearings with tapered bore

Nominal diameter		Radial internal clearance		
d		C1		
mm		μm		
over	incl.	min.	max.	
40	50	17	30	
50	65	20	35	
65	80	25	40	
80	100	35	55	
100	120	40	60	
120	140	45	70	
140	160	50	75	
160	180	55	85	
180	200	60	90	
200	225	60	95	

Radial internal clearance of bearings with cylindrical bore

The radial internal clearance of printing machinery bearings with a cylindrical bore is specially determined for each application. The swivel bearing in three-ring and four-ring bearings is clearancefree or slightly preloaded and is already set when the bearing is supplied. Setting is not required.

For design work, the Schaeffler Group has high performance calculation software available. The tolerances must be determined with care in order to achieve optimum function. This requires a precise knowledge of the application and the available production facilities of the printing machinery manufacturer.

Design of bearing arrangements

Requirements for the adjacent construction

Printing machinery bearings are robust machine elements that place requirements on the accuracy of the adjacent construction which can be achieved without problems by modern machine tools.

The essential demands on the adjacent construction are a shaft journal manufactured to high accuracy and a precision machined bore in the side wall. Normally, the bearing journal is ground and the side wall bore is finished and, where necessary, honed, *Figure 1*.

 Double direction axial cylindrical roller bearing
 Bearing unit DML3E
 with an eccentric intermediate ring
 Precision locknut ZM

> Figure 1 Application example Blanket cylinder bearing arrangement

Design of bearing arrangements

Axial location of printing machinery bearings	The bearing outer ring of a printing machinery bearing DML can be located very simply, since practically no axial forces must be supported during operation. The eccentric intermediate and outer rings of three-ring and four-ring bearings are axially located by means of a rigid shoulder on the bearing and by retaining rings. In the case of the bearing units DML3E, DML3D and DMLD, it is there- fore not necessary to locate the outer ring axially via the adjacent construction. In general, it is sufficient to axially locate the adjacent part for eccentric motion on the side wall, <i>Figure 1</i> , page 37.
Axial bearing arrangement	If cylindrical roller bearings are used on both sides, an additional rolling bearing is necessary in order to support the axial forces. Since the forces are normally very low in printing machines, the requirements can generally be fulfilled by means of economical standard bearings. The types proven in practice include double row clearance-free angular contact ball bearings or double direction axial needle roller or cylindrical roller bearings, see page 98.
Shaft and housing tolerances	For a cylindrical seat, the tolerance for the cylinder journal should be as close as possible in order to minimise the tolerance for the bearing operating clearance. Optimum preconditions are achieved with a shaft tolerance corresponding to grade IT4. However, all the requirements can generally be fulfilled with the frequently used shaft fit k5. With a conical journal, the tolerance can be somewhat larger, since the operating clearance can be individually adjusted. In practice, the shaft fit js6 is frequently used in this case.
Tolerances of side wall bore	For printing machinery bearings, a transition fit or a press fit between the side wall bore and bearing outside diameter is normally used. If a bearing unit DMLE or DML3D is used, where the outer eccentric must be moved during operation, a certain fit clearance is necessary. In order to minimise possible deformation of the components, the tolerance zones should preferably be narrow. This is achieved by appropriate allocation of the bearings to the side wall bore or by high precision manufacturing methods such as honing. In order to facilitate easier allocation, the printing machinery bearings can be supplied with measured and documented actual values for the bearing outside diameter. For larger volumes, such as frequently occur in the case of sheetfed offset printing machines, it is economical to design printing machinery bearings with various dimension groups for the outside diameter. The diameter tolerance of the side wall bore can then be relatively large, which is highly advantageous for volume production.

Tables of shaft and housing tolerances

Tolerances for shafts

The tolerances for the shaft and housing correspond to ISO 286-2, see tables.

Shaft diameter		Tolerance zone					
d		js4		js5		js6	
mm		Deviation μm					
over	incl.	upper	lower	upper	lower	upper	lower
50	80	+4	-4	+6,5	-6,5	+9,5	-9,5
80	120	+5	-5	+7,5	-7,5	+11	-11
120	180	+6	-6	+9	-9	+12,5	-12,5
180	250	+7	-7	+10	-10	+14,5	-14,5
250	315	+8	-8	+11,5	-11,5	+16	-16

Tolerances for shafts	
(continued)	

Shaft diameter Tolera			olerance zone							
d		k4		k5		m4		m5		
		Deviati	on					•		
mm		μm	μm							
over	incl.	upper	lower	upper	lower	upper	lower	upper	lower	
50	80	+10	+2	+15	+2	+15	+2	+19	+11	
80	120	+13	+3	+18	+3	+18	+3	+23	+13	
120	180	+15	+3	+21	+3	+21	+3	+27	+15	
180	250	+18	+4	+24	+4	+24	+4	+31	+17	
250	315	+20	+4	+27	+4	+27	+4	+36	+20	

Design of bearing arrangements

Tolerances for housing bores

Tolerance	Bore diameter				
zone	D				
	mm				
	over 50	80	120	180	250
	incl. 80	120	180	250	315
	Deviation				
	μm				
H4	upper +8	+10	+12	+14	+16
	lower 0	0	0	0	0
H5	upper +13	+15	+18	+20	+23
	lower 0	0	0	0	0
H6	upper +19	+22	+25	+29	+32
	lower 0	0	0	0	0
H7	upper +30	+35	+40	+46	+52
	lower 0	0	0	0	0
JS4	upper +4	+5	+6	+7	+8
	lower -4	-5	-6	-7	-8
JS5	upper +6,5	+7,5	+9	+10	+11,5
	lower -6,5	-7,5	-9	-10	-11,5
JS6	upper +9,5	+11	+12,5	+14,5	+16
	lower -9,5	-11	-12,5	-14,5	-16
JS7	upper +15	+17,5	+20	+23	+26
	lower –15	-17,5	-20	-23	-26
K5	upper +3	+2	+3	+2	+3
	lower -10	-13	-15	-18	-20
K6	upper +4	+4	+4	+5	+5
	lower –15	-18	-21	-24	-27
K7	upper +9	+10	+12	+13	+16
	lower -21	-25	-28	-33	-36
M5	upper -6	-8	-9	-11	-13
	lower –19	-23	-27	-31	-36
M6	upper -5	-6	-8	-8	-9
	lower -24	-28	-33	-37	-41
M7	upper 0	0	0	0	0
	lower -30	-35	-40	-46	-52

Geometrical tolerances of bearing seating surfaces

If the bearing arrangement is to fulfil the relevant requirements for running accuracy, rigidity, freedom from clearance and operating temperature as well as provide excellent print quality, the accuracy of the adjacent construction must meet certain minimum requirements.

Deviations from the geometrical form of the adjacent parts must be kept to a minimum.

In order to achieve the required fit, the bearing seats and fit surfaces of the shaft and housing bore must conform to certain tolerances, Figure 2, Figure 3 and tables, page 42. The roughness of the bearing seats must be observed, page 43.

Geometrical tolerances

Geometrical tolerances for side wall bores

Design of bearing arrangements

Accuracy bearing seating surfaces Example: Shaft	For the tolerances of bearing seats on the shaft and in the housing, a permissible geometrical deviation is stated, see tables. This degree of accuracy can be resolved with the aid of the ISO fundamental tolerances to ISO 286, see page 43. When determining the tolerance values for the permissible geometrical deviations, the relevant shaft diameter or bore diameter must be used. Tolerance value for a bearing of tolerance class P5 with a shaft				
Example: Share	diameter of 90 n	•		with a share	
Geometrical tolerances for shafts	Characteristic	Tolerance value	Tolerance class Permissible geome	trical deviation	
			P5	P4	
	Roundness	t	IT3 · 1/2	IT2 · 1/2	
	Parallelism	t ₁	IT3 · 1/2 IT2 · 1/2		
	Inclination	t ₂	IT3 · 1/2 IT3 · 1/2		
	Axial runout	t ₃	IT3	IT3	

Example: Bore Tolerance value for a bearing of tolerance class P5 with a bore diameter of 80 mm, table: roundness t = $|T3 \cdot 1/2 = 5 \cdot 1/2 = 2,5 \mu m$.

Geometrical tolerances of housing bores

of

Characteristic	Tolerance value	Tolerance class Permissible geometrical deviation	
		P5	P4
Roundness	t	IT3 · 1/2	IT2 · 1/2
Parallelism	t ₁	IT3 · 1/2	IT2 · 1/2
Perpendicularity	t ₃	IT3 · 1/2	IT3 · 1/2

Roughness of bearing seats

The roughness of the bearing seats must be matched to the tolerance class of the bearings. The mean roughness value Ra must not be too high, in order to maintain the interference loss within limits, see tables. Shafts should be ground and bores should be precision turned.

The bore and shaft tolerances and permissible roughness values are also given in the design and safety guidelines in the product chapters.

Guide values for roughness of shafts

	Arithmetic mean value	Maximum height of profile
class	Ra	Rz
	μm	μm
P5	0,5	4
P4	0,5	4

Guide values	
for roughness of housing bores	

Tolerance class	Bearing outer ring with frequent swivel motion		Bearing outer ring, static	
	Arithmetic mean value	Maximum height of profile	Arithmetic mean value	Maximum height of profile
	Ra	Rz	Ra	Rz
	μm	μm	μm	μm
P5	0,4	2,5	1,6	10
P4	0,4	2,5	1,6	10

Values for IT grades

IT grades and values

IT3

IT4

IT5

5

8

13

DIN ISO 286, see table.					
Grade	Nominal dimension in mm				
	over 50	80	120	180	250
	incl. 80	120	180	250	315
	Values in μm				
IT2	3	4	5	7	8

8

12

18

10

14

20

12

16

23

6

10

15

The ISO fundamental tolerances (IT grades) correspond to

Mounting guidelines	Bearings for printing machinery are precision machine elements. These products must be handled very carefully both before and during mounting. The function and operating life of the bearings are also dependent on the care taken in mounting.
Delivered condition and storage	Bearings for printing machinery are preserved using an anti- corrosion protection agent with a mineral oil base. The storage period for greased and sealed bearings is limited by the shelf life of the grease and the sealing ring material. The bearings should be stored in dry, clean rooms with a temperature as constant as possible and at a relative humidity of max. 65%.
Removal from packaging	 Perspiration causes corrosion: Hands must be kept clean and dry. Safety gloves must be worn. Bearings should not be removed from their original packaging until immediately before mounting.
Mounting method	Depending on the individual circumstances of printing machinery manufacturers, various methods can be used.
Supercooling of bearings	This method is frequently used for printing machinery bearings with a conical inner ring bore and a rigid fit in the side wall. The bearing unit, without the inner ring, is cooled and can then be mounted by hand and without special mounting tools in the side wall bore. The bearing inner ring is then mounted with a suitable spacer ring. Cooling of the bearing can lead to condensation on the bearing. In order to prevent corrosion, the bearing and side wall bore should first be sprayed with an effective preservative oil with a mineral oil base.
Pressing into place at room temperature	Alternatively, it is also possible to press the bearing units in without problems at room temperature. In order to overcome the press-in forces, appropriate mounting tools are required that are specially matched to the bearing and printing machine. In order to prevent damage to the bearings as a result of incorrect mounting, we recom- mend that the planned procedure and handling of the mounting tools is agreed with the engineering service of the Schaeffler Group. By this method, printing machinery bearings up to four-ring bearings with a cylindrical bearing journal and rigid fit can also be mounted securely and particularly economically in the side wall.

Dismounting In the case of bearings with a conical inner ring bore, the inner ring is loosened from the shaft with the aid of the pressure oil process. The bearing outer ring or bearing outer ring assembly of three-ring and four-ring bearings is then removed from the side wall using suitable withdrawal tools. The retaining rings and shoulders on the eccentric rings are dimensioned such that the bearing is not damaged as a result.

> Bearing units with a cylindrical seat are designed such that the inner ring is removed at the same time as dismounting is carried out. This is necessary because the bearings are often preloaded and the raceways could be damaged if dismounting was carried out in separate operations.

Clearance adjustment of cylindrical roller bearings

Cylindrical roller bearings with a tapered bore are mounted with clearance, clearance-free or with preload.

Specific steps and a device for measuring the enveloping circle of the rolling elements are required. The advantages of this method are that the operating clearance can be set to a very close tolerance of $\pm 1 \,\mu$ m.

An example is given below of the mounting procedure for cylindrical roller bearings with a tapered bore and a separable outer ring, N10 and NN30, and the enveloping circle gauge MGA 31. The gauge is used to precisely set the radial internal clearance or preload of cylindrical roller bearings.

Step 1 Measure the raceway diameter of the mounted outer ring using a conventional internal gauge, Figure 1.

Figure 1 Raceway diameter of the outer ring

Mounting procedure for cylindrical roller bearings

Step 2 Transfer this dimension to the two hardened and precision ground measuring surfaces of the enveloping circle gauge, *Figure 2*.

Figure 2 Transferring the raceway diameter to the enveloping circle gauge

Step 3

Then position the gauge on the inner ring and roller and cage assembly premounted on the tapered shaft, *Figure 3*.

Figure 3 Positioning the enveloping circle gauge

- Step 4 Drive up the bearing axially until the precision indicator of the enveloping circle gauge shows the required radial internal clearance or preload.
 - Then determine the distance between the bearing inner ring and the shaft shoulder using gauge blocks at four measurement points offset by 90°, *Figure 4*.
 - After dismounting the bearing inner ring, grind the width of a gauge ring to match the determined distance and slide this over the cylindrical section of the shaft.
 - Finally, mount the bearing inner ring again and secure using a nut.

Figure 4 Measuring the distance to the shaft shoulder

Setting the clearance without a gauge

If an enveloping circle gauge is not available, the clearance can be set to a fairly precise value by measuring the radial change in bearing clearance using a dial gauge. The method is not as precise as the use of an enveloping circle gauge but is generally adequate.

We recommend discussion with the engineering service of the Schaeffler Group in order to identify the most technically appropriate and cost-effective method for the specific application.

Industrial mounting service	 The Schaeffler Group offers high quality products, services and training on all types of bearing arrangements. The industrial mounting service includes: mounting and dismounting of rolling bearings of all types approval inspection of adjacent parts (shafts and housings) maintenance and inspection of bearing arrangements defect analysis on bearing arrangements not running satisfactorily advice on rationalisation of mounting operations design and manufacture of special tools.
Equipment rental	Customers who require special mounting and measuring equipment only infrequently, for example in order to carry out repairs, can rent these from the Schaeffler Group on a weekly basis. Where mounting of bearings is carried out only rarely, rental of taper and enveloping circle gauges and of heating devices may be an economical alternative to the purchase of the necessary equipment.
Further information	 Detailed information on the range available in the area of industrial service can be found in Catalogue IS 1, Mounting and Maintenance of Rolling Bearings. Enquiries: www.schaeffler-iam.de, +49 2407 9149-66.

Measurement and inspection of high precision bearings

Gauges and heating devices for mounting can be obtained via the Schaeffler Group. In some cases, these are also provided on a rental basis.

Enveloping circle
gauge MGI21The enveloping circle gauge is used to set the radial internal
clearance of cylindrical roller bearings with a separable inner ring.
It is suitable for cylindrical roller bearings NU4920-K to NNU4948-K
and NNU4920 to NNU4948. Bearings with a bore diameter from
100 mm to 240 mm have separable inner rings.

In the FAG enveloping circle gauge MGI21, the internal enveloping circle of the roller and cage assembly is measured by two hardened and precision ground surfaces, one of which is movable, *Figure 5*.

After mounting of the outer ring, the gauge is set to the internal enveloping circle of the roller and cage assembly. This dimension is measured using a snap gauge, for example the SNAP-GAUGE. It is then possible to set the inner ring to the diameter that gives the required radial internal clearance.

Bearings with a tapered bore are slid onto the tapered seat of the shaft.

Ordering example Ordering designation

Enveloping circle gauge for cylindrical roller bearing NNU4920 **MGI21-4920**

MGI 21

Figure 5 Gauge for cylindrical roller bearings with separable inner ring

Enveloping circle gauge MGA31

The MGA31 is used to set the radial internal clearance of cylindrical roller bearings with a tapered bore and separable outer ring, *Figure 6*. It is suitable for cylindrical roller bearings NN3006-K to NN3048-K and N1006-K to N1048-K. The gauge is used to precisely set the radial internal clearance or preload of cylindrical roller bearings.

The raceway diameter of the mounted outer ring is first measured using a conventional internal gauge. This dimension is transferred to the two hardened and precision ground measuring surfaces of the enveloping circle gauge. The gauge is then positioned on the premounted inner ring. The bearing is then driven up axially until the precision indicator of the enveloping circle gauge shows the required radial internal clearance or preload.

Ordering example Ordering designation

Enveloping circle gauge for cylindrical roller bearing NN3006-K MGA31-NN3006

MGA31

Figure 6 Gauge for cylindrical roller bearings with separable outer ring

0001831C

Snap gauge SNAP-GAUGE

This gauge is used for inspecting the diameter of cylindrical shafts and workpieces of all types directly on the machine tool and for setting of the enveloping circle gauge MGI 21, *Figure 7*. The actual dimension can be determined precisely. The snap gauge functions as a comparator gauge. Its setting is checked using master shims that can be obtained for each diameter.

Ordering example Ordering designation

Ordering example Ordering designation

Ordering designation for SNAP-GAUGE

Snap gauge for shaft diameter 120 mm **SNAP-GAUGE-100/150**, see table

Shim for shaft diameter 120 mm SNAP-GAUGE.MASTER120

Ordering designation	Measurement range mm
SNAP-GAUGE-30/60	30 - 60
SNAP-GAUGE-60/100	60 - 100
SNAP-GAUGE-100/150	100 – 150

SNAP-GAUGE

Figure 7 Snap gauge 0001831E

Taper gauge MGK133

The taper gauge MGK 133 is suitable for outer tapers of 1:12 and 1:30 and taper diameters from 27 mm to 205 mm, *Figure 8*.

It rests on the taper with four hardened and polished support pins. The position of the gauge on the taper is defined by these pins and one stop. The stop can be attached to either the front or back of the gauge. The gauge contains two movable measuring brackets, one of which is in contact with the smaller taper diameter while the other, at a fixed distance, is in contact with the larger taper diameter. The deviation of the taper diameter from the nominal value is displayed in both measurement planes by a precision indicator. The reproducibility of the measurement results is less than 1 μ m. The gauge is set using a reference taper, which is available by

Ordering designation

Available by agreement.

agreement.

MGK133

Figure 8 Taper gauge

Taper ring gauges KLRTaper ring gauges KLR are the simplest option for inspecting the
bearing seat on small bearings, *Figure 9*. Inking is used to determine
the matching of the ring gauge and bearing seat. The bearing seat
is machined until the ring gauge is supported over its whole width.
The inner rings of bearings are not suitable, since they can be
damaged during inking.

Taper ring gauges are available in designs for taper diameters from 30 mm to 240 mm.

Ordering example

Ordering designation

Taper ring gauge for bearing with 100 mm bore, for example double row cylindrical roller bearing NN3020-AS-K **KLR-NN3020**

KLR

Figure 9 Taper ring gauges

Hydraulic mounting and dismounting of high precision bearings

Hydraulic tools can be used to apply large forces. These tools are therefore particularly suitable for the mounting and dismounting of large bearings or parts with a tapered bore.

Hydraulic nuts are used as a mounting tool. Pressure can be generated using oil injectors, hand pumps or hydraulic units.

Hand pumps have a single stage or twin stage pump with

Hand pumps

Single stage pump TI

a manometer.

The hand pump PUMP1000-0,7L has an oil container with a volume of 0,7 l, *Figure 10*. The maximum pressure is 1000 bar, see table. A digital manometer is available as an accessory.

PUMP1000-0,7L

 Pump body
 Manometer
 Wear parts, set
 Oil container
 Push fit coupling nipple, including sealing ring
 Collar, including sealing ring
 High pressure hose
 Transport case

Figure 10 Single stage hand pump

Available single stage pump

Designation	Maximum oil pressure bar
PUMP1000-0,7L	1 000

Twin stage pump

The twin stage pumps, at pressures up to 50 bar, have a high delivery rate and then switch automatically to the high pressure stage, see *Figure 11* and table. This gives a high work rate. Where there is an increased oil requirement, the twin stage pumps are available with an 8-l oil container (suffix 8L). In those cases where the type of installation of the adapter or withdrawal sleeve requires a separate oil supply, a two-way valve is available (suffix D).

For pumps with an oil pressure of 1000 bar and a connector, digital manometers are also available as accessories.

PUMP1600-4L

 Pump body
 Manometer
 Adapter for manometer
 Wear parts, set
 Oil container
 Push fit coupling nipple, including sealing ring
 Collar, including sealing ring
 High pressure hose
 Two-way valve
 Transport case

Figure 11 Twin stage hand pump

Available twin stage pumps

Designation	Maximum oil pressure	
	bar	
PUMP1000-4L	1 000	
PUMP1600-4L	1 600	
PUMP2500-4L	2 500	

- **Hydraulic nuts** Hydraulic nuts HYDNUT are used to press components with a tapered bore onto their tapered seat, *Figure 12* and table. Presses are mainly used if the drive-up forces required cannot be applied using other accessories, e.g. shaft nuts or pressure screws.
 - The main applications are as follows:
 - mounting and dismounting of rolling bearings with a tapered bore. The bearings can be seated directly on a tapered shaft, an adapter sleeve or a withdrawal sleeve. The hydraulic nut can also be used for the dismounting of adapter or withdrawal sleeves.
 - mounting and dismounting of components such as couplings, gears and ships' propellers.

Figure 12 Hydraulic nuts

Availab	le hyc	Iraulic	nuts
---------	--------	---------	------

Designation	Design	Application
HYDNUT50 to HYDNUT200	With metric fine pitch thread to DIN 13	Standardised adapter and withdrawal sleeves
HYDNUT205 to HYDNUT1180	With trapezoidal thread to DIN 103	With metric dimensions
HYDNUT90-INCH to HYDNUT530-INCH	With inch size thread to ABMA "Standards for Mounting Accessories, Section 8, Locknut Series N-00"	Sleeves with inch dimensions
HYDNUT100-HEAVY to HYDNUT900-HEAVY	Increased capacity design with smooth bore	For high mounting forces, for example in shipbuilding

Further information

- For detailed information, see TPI 196, FAG Hydraulic Nuts.
- Enquiries: info@schaeffler-iam.de, +49 2407 9149-66.

	Page
Product overview	Radial bearings for printing machinery 61
Features	High precision cylindrical roller bearings
	Bearing unit with concentric inner and outer ring
	Tapered roller bearings with heavy-section outer ring
	Matched tapered roller bearings 69
	Bearing unit with eccentric outer ring70
	Bearing unit with eccentric intermediate ring71
	Bearing unit with eccentric intermediate and outer ring
	Bearing unit with two eccentric intermediate rings
Design and	Permissible skewing74
safety guidelines	Axial location74
	Mounting of bearings
Accuracy	

	Р	age
Dimension tables	High precision cylindrical roller bearings, double row, open	76
	High precision cylindrical roller bearings, four-row, with tapered bore, open or sealed	80
	Printing machine bearing units, concentric inner and outer ring, with cylindrical or tapered bore, open or sealed	82
	Printing machine bearing units, locating bearings, concentric inner and outer ring, with cylindrical bore, open or sealed	84
	Tapered roller bearings, matched pair, in O arrangement, with cylindrical bore, open or sealed	86
	Printing machine bearing units, eccentric outer ring, with cylindrical or tapered bore, open or sealed	88
	Printing machine bearing units, eccentric intermediate ring, with cylindrical or tapered bore, open or sealed	90
	Printing machine bearing units, eccentric intermediate and outer ring, with cylindrical or tapered bore, open or sealed	94
	Printing machine bearing units, two eccentric intermediate rings, with cylindrical or tapered bore, open or sealed	96

Product overview Radial bearings for printing machinery

High precision cylindrical roller bearings Double row or four-row Non-locating bearing

000186F3

DML

Locating bearing

00018679

Tapered roller bearings Locating bearing

TR2

TBS

TR2

DMLE

Bearing unit with eccentric outer ring Non-locating bearing

Bearing unit with eccentric intermediate ring Non-locating bearing

DML3E

DMLE

Schaeffler Technologies

Bearing unit with eccentric intermediate and outer ring Non-locating bearing

DML3D

DML3D

Bearing unit with two eccentric intermediate rings Non-locating bearing

DMLD

Features Radial bearings for printing machinery allow radially rigid, high precision bearing arrangements and are principally used to give radial support for main cylinders.

Locating bearings of series DMF, TBS, TR2 additionally support radial forces.

The bearings comprise heavy-section bearing rings that are not interchangeable. Bearings with plastic cages, steel cages or brass cages are used.

The inner ring bores are available in a cylindrical or tapered design. In general, double row cylindrical roller bearings have a taper 1:12, while triple row and four-row cylindrical roller bearings have a taper 1:30.

High precision cylindrical roller bearings

These are double row or four-row high precision cylindrical roller bearings to accuracy Special Precision SP or to P5 with a small cross-section height and high radial rigidity, *Figure 1*. For bearing arrangements on printing machine cylinders, an additional bearing sleeve is generally required.

The bearings can only support radial forces. These non-locating bearings are particularly used on cylinders that are not moved, such as the paper feed cylinders in sheetfed offset printing machines or on the plate cylinder.

Figure 1 Double row and four-row cylindrical roller bearings

Irical roller bearings		inite		1140	•
Design	These bearings precisely set.	generally ha	ve a tapered bo	re and can therefor	e be
	roller bearings I	N4N have roll es NNU and N	ing elements gu I4U, in contrast,	d four-row cylindri ided by ribs on the the rolling element	inner
Internal clearance	to the internal of	clearance cla machinery, b	ss C1. Dependin	re produced as star ng on the requireme produced with spe	ents
Preload	The bearings ca	an be preload	led clearance-fre	ee.	
Lubrication	The bearings ar holes in the out		via a lubrication	groove and lubrica	ation

Bearing unit with concentric inner and outer ring

This type is used for cylinders that do not require radial motion, such as the impression cylinder in sheetfed or newsprint rotary printing machines. In contrast to conventional cylindrical roller bearings, the outer ring is of a thick-walled design. As a result, the additional bearing sleeve normally fitted in the printing machine is no longer necessary. This allows a very cost-effective bearing arrangement and gives improved accuracy, since there is no bearingto-sleeve fit.

Holes in the outer ring are used for location purposes or for the inlet and outlet of lubricant.

Since the bearing outer ring can be mounted with a tight fit in the side wall, a bearing position absolutely free from clearance can be achieved. Printing machinery bearings can thus be used to fulfil very high print quality requirements.

Non-locating bearing design

Depending on the requirements, the inner ring has either a tapered or cylindrical bore, *Figure 2*. The tapered design has the advantage of very precise setting of operating clearance, while the cylindrical design allows particularly economical mounting.

Depending on the load, printing machinery bearings have two, three or four rows of rolling elements. The bearings can only support radial forces.

DML

Figure 2 Bearing unit Non-locating bearing DML

Locating bearing design

For paper feed cylinders in sheetfed offset printing machines, the locating bearing DMF is particularly suitable, *Figure 3*. It can support radial and axial forces and fulfils the very high demands for rigidity and freedom from clearance. The double direction axial needle roller bearing integrated in a ready-to-fit unit is set free from clearance, particularly rigid and has extremely low axial runout. This is particularly advantageous, in the case of two-stop cylinders, for excellent print quality.

The inner ring of the double row cylindrical roller bearing has a cylindrical bore. The bearing arrangement is therefore highly cost-effective and mounting is both simple and secure. It is fixed to the side wall by means of the integral flange cover. This eliminates the need for additional fitting parts.

DMF

Axial needle roller bearing
 Cylindrical roller bearing

Figure 3 Bearing unit Locating bearing DMF

Internal clearance

This is defined specially by the Schaeffler Group.

Preload The types DMF and DML normally run in operation with a small bearing preload. Depending on requirements, type DML can also have slight clearance. Even under bearing preload, the bearing unit DML allows reliable axial displacement of the rotating inner ring relative to the outer ring. Type DML is therefore particularly suitable for use in plate and form cylinders.

- **Sealing** The bearings are available in an open design or with integrated seals.
- **Lubrication** The bearings can be relubricated via holes in the outer ring and are suitable for oil or grease lubrication.
 - **Cage** The printing machine bearing has rib-guided cylindrical rollers in modern plastic, steel or brass cages that have particularly low friction and allow high speeds while maintaining low bearing temperatures.

Tapered roller bearings with heavy-section outer ring

These are ready-to-fit double row bearing units that can support radial and axial forces, *Figure 4*.

Matched tapered roller bearings

The single row tapered roller bearings normally used in pairs in an O arrangement are precisely matched by means of intermediate rings, *Figure 5*. As a result, these bearings have axial clearance to tight tolerances. In general, an additional bearing sleeve is necessary.

		•
TR2	A THE THE TANK	
<i>Figure 5</i> Bearing unit Locating bearing TR2		000185EB
Internal clearance	This is defined specially by the Schaeffler Gro	oup.
Preload	The bearing arrangement is clearance-free after mounting and can support radial and axial forces. These bearings are also suitable as locating bearings for cylinders that are not moved.	
Sealing	The bearing unit is of an open design. The sealing arrangement can be designed anywhere within the adjacent construction.	
Lubrication	Matched tapered roller bearings can be lubric grease. They are relubricated via holes in the	

Schaeffler Technologies

Bearing unit with eccentric outer ring

In contrast to the bearing unit DML, the bearing unit DMLE has a thick-walled eccentric outer ring, *Figure 6*. It can support radial forces only.

This printing machine bearing is normally used on cylinders that are positioned during mounting for adjustment purposes only. The eccentric outer ring can be rotated to change the centre distance between the cylinders. In order to facilitate minute adjustment under a tight fit between the bearing outer ring and the side wall bore, the bearing unit DMLE can also be provided with a pressure oil connection in the outer ring.

The other features of the bearing unit correspond to those of the bearing unit DML.

DMLE

Figure 6 Bearing unit Non-locating bearing DMLE

Design	The bearings have an inner ring with a tapered or cylindrical bore.
-	In addition to the centring surfaces for the adjacent parts, the outer
	ring also has lubrication and fixing holes.

The bearing units are available with two, three or four rows of rolling elements.

Internal clearance This is defined specially by the Schaeffler Group. In operation, the bearings run with slight preload or even, depending on printing machine requirements, with slight bearing clearance. Even under bearing preload, reliable axial displacement of the inner ring in relation to the outer ring is possible (for example in plate cylinder applications).

- **Sealing** The bearings are available in an open design or with integrated seals.
- Lubrication The bearings can be relubricated via holes in the outer ring and are suitable for oil or grease lubrication.
 - **Cage** The printing machine bearing has rib-guided cylindrical rollers in modern plastic, steel or brass cages.
Bearing unit with eccentric intermediate ring

This is a three-ring bearing. In contrast to the bearing unit DMLE, the eccentric is also supported by rolling elements, *Figure 7*. As a result, this printing machine bearing is particularly suitable for frequently moved cylinders, for example for the on-off print function of blanket cylinders.

It is a swivel bearing with a swivel angle that is normally smaller than 35° and is subjected to predominantly static load.

In comparison with the conventional technology based on eccentric cast plain bearing bushes, this gives several advantages:

no risk of jamming

available with a cage.

- consistently low frictional torque
- no clearance
- no wear
- excellent reliability proven in practice
- freedom from maintenance.

DML3E

 Inner ring with cylindrical or tapered bore

 Multi-row high precision cylindrical roller bearing, with cage
 Eccentric intermediate ring
 Eccentric bearing arrangement in full complement cylindrical roller bearings, greased for life
 O ring seal
 Cylindrical outer ring

Figure 7 Three-ring printing machine bearing

Design The bearing unit DML3E is a ready-to-fit bearing unit that allows costeffective solutions. The bearing unit is available with two, three or four rows of rolling elements. Sealing The bearings are available in an open design or with integrated seals. The swivel bearing is generally sealed on both sides. Lubrication The swivel bearing is maintenance-free and is filled as standard with an optimum grease for the particular loads present. The inner cylindrical roller bearing can be relubricated via holes in the outer ring and is suitable for oil or grease lubrication. The inner cylindrical roller bearing has rib-guided cylindrical rollers Cage in modern plastic, steel or brass cages. The swivel bearing generally has a full complement roller set. For special requirements, it is also

Radial bearings for printing machinery

Bearing unit with eccentric intermediate and outer ring This type is identical, except for the design of the outer ring, to the printing machine bearing DML3E. The bearing unit DML3D has an eccentric outer ring, *Figure 8*. The inner eccentric profile normally fulfils the on-off print function, while the outer eccentric profile allows basic positioning of the cylinder during mounting or radial adjustment during operation. In order to facilitate minute adjustment under a tight fit between the bearing outer ring and the side wall bore, the bearing unit DMLE can also be provided with a pressure oil connection in the outer ring.

If a small fit clearance is permissible in the application, this eccentric arrangement can also fulfil other functions such as diagonal register of the plate cylinder (cocking).

DML3D

Figure 8 Bearing unit Non-locating bearing DML3D

aring DML3D	6
Design	The bearing unit DML3D is a ready-to-fit bearing unit that allows cost-effective solutions.
	The bearing unit is available with two, three or four rows of rolling elements.
Sealing	The bearings are available in an open design or with integrated seals. The swivel bearing is generally sealed on both sides.
Lubrication	The swivel bearing is maintenance-free and is filled as standard with an optimum grease for the particular loads present. The inner cylindrical roller bearing can be relubricated via holes in the outer ring and is suitable for oil or grease lubrication.
Cage	The inner cylindrical roller bearing has rib-guided cylindrical rollers in modern plastic, steel or brass cages that have particularly low friction and allow high speeds while maintaining low bearing temperatures. The swivel bearing generally has a full complement roller set. For special requirements, it is also available with a cage.

Bearing unit with two eccentric intermediate rings

In contrast to the bearing unit DML3D, the printing machine bearing DMLD has two eccentrics supported by rolling elements and thus one thin-walled outer ring more, *Figure 9*. This four-ring bearing allows eccentric adjustment characterised by low friction, freedom from clearance and extremely high reliability.

Even if the bearing unit is mounted with a tight fit in the side wall, a clearance-free bearing arrangement is possible. This bearing is normally used for the on-off print cylinder function and minute adjustment movements (diagonal register or paper thickness adjustment). The bearing design corresponds in principle to the types DML3E and DML with the features described above.

DMLD

Design

Figure 9 Bearing unit Non-locating bearing DMLD

The bearings have a concentric inner ring, two eccentric intermediate rings and a concentric outer ring. The bearing units are available with two, three or four rows of rolling elements.

Sealing The bearings are available in an open design or with integrated seals. The swivel bearings are generally sealed on both sides.

- Lubrication The swivel bearings are maintenance-free and are filled as standard with an optimum grease for the particular loads present. The inner cylindrical roller bearing can be relubricated via holes in the inner eccentric ring and is suitable for oil or grease lubrication.
 - **Cage** The inner cylindrical roller bearing has rib-guided cylindrical rollers in modern plastic, steel or brass cages that have particularly low friction and allow high speeds while maintaining low bearing temperatures. The swivel bearings generally have a full complement roller set. For special requirements, they are also available with a cage.

Radial bearings for printing machinery

Design and safety guidelines	
Permissible skewing	In printing machinery applications, the inner ring generally undergoes skewing of less than 1' relative to the outer ring. Within this range, there is no significant reduction in rating life.
Shaft and housing tolerances	Recommended shaft and housing tolerances with cylindrical bore, see tables, page 39.
Axial location	In order to prevent lateral creep of the bearing rings, they must be located by force or physical locking means. The abutment shoulders (shaft and housing) should be sufficiently high and perpendicular to the bearing axis. The transition from the bearing seat to the abutment shoulder must be designed with rounding to DIN 5418 or an undercut to DIN 509.
Mounting of bearings	In order to ensure functionally reliable operation of printing machinery bearings, mounting must be carried out correctly and with the appropriate care. In particular, the further guidelines on operating clearance must be observed, see page 16.
Accuracy	The geometrical tolerances of the radial bearings correspond to DIN 620-2 (ISO 492), see page 28.

NN30

NNU49

Dimension table · Dimensions in mm							
Designation		Mass	Dimension	Dimensions			
		m	d	D	В	С	
			ŭ				
		≈kg					
NN3010-AS-K-M-SP	-	0,43	50	80	23	23	
NN3011-AS-K-M-SP	-	0,63	55	90	26	26	
NN3012-AS-K-M-SP	-	0,67	60	95	26	26	
-	NNU60X115X56	2,6	60	115	56	56	
NN3013-AS-K-M-SP	-	0,72	65	100	26	26	
-	NNU4914-S-K-M-SP	0,73	70	100	30	30	
NN3014-AS-K-M-SP	-	1,04	70	110	30	30	
-	NNU4915-S-K-M-SP	0,77	75	105	30	30	
-	NNU75X115X30	1,1	75	115	30	30	
NN3015-AS-K-M-SP	-	1,09	75	115	30	30	
-	NNU4916-S-K-M-SP	0,81	80	110	30	30	
NN3016-AS-K-M-SP	-	1,51	80	125	34	34	
NN80X140X43	-	3,7	80	140	43	43	
-	NNU4917-S-K-M-SP	1,2	85	120	35	35	
NN3017-AS-K-M-SP	-	1,58	85	130	34	34	
-	NNU4918-S-K-M-SP	1,26	90	125	35	35	
NN3018-AS-K-M-SP	-	2,05	90	140	37	37	
-	NNU4919-S-K-M-SP	1,32	95	130	35	35	
NN3019-AS-K-M-SP	-	2,14	95	145	37	37	

		Basic load ratings		Fatigue limit load	Bearing seat
E	F	dyn. C _r	stat. C _{0r}	C _u	
		N	N	N	
72,5	-	57 000	80 000	11800	Taper 1:12
81	-	72 000	100 000	15 600	Taper 1:12
86,1	-	75 000	110 000	17 200	Taper 1:12
-	75	220 000	305 000	38 100	Taper 1:30
91	-	77 000	116 000	18000	Taper 1:12
-	80	60 000	104 000	16800	Taper 1:12
100	-	98 000	150 000	22 400	Taper 1:12
-	85	63 000	114 000	18 600	Taper 1:12
-	87	99 000	146 000	17 700	Taper 1:12
105	-	100 000	156 000	23 400	Taper 1:12
-	90	66 000	122 000	19800	Taper 1:12
113	-	120 000	186 000	28 500	Taper 1:12
108	-	137 000	221 000	28 000	Cylindrical
-	96,5	90 000	166 000	27 000	Taper 1:12
118	-	125 000	200 000	30 500	Taper 1:12
-	101,5	93 000	176 000	28 500	Taper 1:12
127	-	140 000	224 000	36 000	Taper 1:12
-	106,5	95 000	186 000	30 000	Taper 1:12
132	-	143 000	236 000	37 000	Taper 1:12

NN30

NNU49

$\textbf{Dimension table} \ (\text{continued}) \ \cdot$	Dimensions in mm					
Designation		Mass	Dimens			
		m	d	D	В	С
		≈kg				
-	NNU4920-S-K-M-SP	1,86	100	140	40	40
NN3020-AS-K-M-SP	_	2,23	100	150	37	37
-	NNU4921-S-K-M-SP	1,93	105	145	40	40
NN105X150X71	-	4	105	150	71	71
NN3021-AS-K-M-SP	-	2,84	105	160	41	41
NN105X160X60	-	3,84	105	160	58	60
-	NNU4922-S-K-M-SP	2,01	110	150	40	40
NN3022-AS-K-M-SP	-	3,61	110	170	45	45
-	NNU4924-S-K-M-SP	2,71	120	165	45	45
NN3024-AS-K-M-SP	-	3,94	120	180	46	46
NN120X180X58	-	5,28	120	180	58	58
-	NNU4926-S-K-M-SP	3,73	130	180	50	50
NN3026-AS-K-M-SP	-	5,79	130	200	52	52
-	NNU4928-S-K-M-SP	4,04	140	190	50	50
NN3028-AS-K-M-SP	-	6,22	140	210	53	53
-	NNU4930-S-K-M-SP	6,1	150	210	60	60
NN3030-AS-K-M-SP	-	7,58	150	225	56	56
-	NNU4932-S-K-M-SP	6,41	160	220	60	60
NN3032-AS-K-M-SP	-	9,23	160	240	60	60
-	NNU4934-S-K-M-SP	6,73	170	230	60	60
NN3034-AS-K-M-SP	-	12,5	170	260	67	67
-	NNU4936-S-K-M-SP	9,96	180	250	69	69
NN3036-AS-K-M-SP	-	16,4	180	280	74	74

		Basic load ratings		Fatigue limit load	Bearing seat
E	F	dyn.	stat.	C _u	
		C _r	C _{0r}		
		Ν	Ν	Ν	
-	113	129 000	255 000	40 500	Taper 1:12
137	-	146 000	245 000	38 000	Taper 1:12
-	118	129 000	260 000	41 500	Taper 1:12
141	-	193 000	345 000	43 000	Taper 1:30
146	-	190 000	310 000	46 000	Taper 1:12
148	-	295 000	510 000	65 000	Taper 1:12
-	123	132 000	270 000	42 500	Taper 1:12
155	-	220 000	360 000	54 000	Taper 1:12
-	134,5	176000	340 000	51 000	Taper 1:12
165	-	232 000	390 000	57 000	Taper 1:12
165	-	320 000	560 000	71 000	Taper 1:12
-	146	190 000	390 000	57 000	Taper 1:12
182	-	290 000	500 000	72 000	Taper 1:12
-	156	190 000	400 000	58 000	Taper 1:12
192	-	300 000	520 000	74 000	Taper 1:12
-	168,5	325 000	655 000	96 000	Taper 1:12
206	-	335 000	585 000	83 000	Taper 1:12
-	178,5	335 000	680 000	98 000	Taper 1:12
219	-	375 000	670 000	93 000	Taper 1:12
-	188,5	340 000	695 000	100 000	Taper 1:12
236	-	450 000	800 000	111 000	Taper 1:12
-	202	405 000	850 000	121 000	Taper 1:12
255	-	570 000	1 000 000	134 000	Taper 1:12

High precision cylindrical roller bearings <u>in an i</u> Ħ 1 h H M I 1 В В D D d Four-row d With tapered bore . Open or sealed ۲ ١ 0001824C 0001824B i h h h

Dimension table · Dimensio	ns in mm								
Designation	Mass	Dimensi	Dimensions			Basic load ra	tings	Fatigue limit load	Sealing for
	m	d	D	В	С	dyn. C	stat. C ₀	C _u	
	≈kg					Ν	N	N	
N4U65X100X60	1,8	65	100	60	54	125 000	250 000	31 000	-
N4U105X150X71	4	105	150	71	71	245 000	520 000	61 000	-
N4U110X150X71	3,5	110	150	71	71	245 000	520 000	61 000	-
N4U120X160X69	4,4	120	160	69	69	250 000	550 000	61 000	-
N4U125X180X100	17,5	125	180	100	90	405 000	800 000	96 000	-
N4N140X210X90	11	140	210	90	90	335 000	690 000	81 000	-
N4N170X235X88	11,2	170	235	78	88	290 000	735 000	92 000	grease

Concentric inner and outer ring With cylindrical or tapered bore Open or sealed

Double row With labyrinth seals

Triple row, open

000181E2

Dimension table · Dimensions in mm					
Designation	Mass	Dimensions			
	m	d	D	В	C
	111	u	U	D	C
	≈kg				
DML55X120X55	3	55	120	40	55
DML60X150X66	6,7	60	150	61	66
DML65X125X65,1	3,7	65	125	53	65,1
DML65X145X55	3,02	65	145	40	55
DML75X180X52	8	75	180	36	52
DML80X140X57	4,1	80	140	43	57
DML100X160X74	5,3	100	160	45	74
DML100X175X65	6,8	100	175	44	65
DML99,942X215,015X53,5	10,3	99,942	215,015	37	53,5
DML105X150X71	4	105	150	71	71
DML105X180X70	6,4	105	180	55	70
DML105X200X80	10	105	200	60	80
DML120X180X40	4	120	180	40	40
DML120X190X80	8,56	120	190	65	80
DML120X210X50	8,13	120	210	50	49
DML120X200X79	8,4	120	200	55	74
DML120X200X79	10	120	200	72	79
DML130X230X92	15,4	130	230	78	92
DML140X190X65	5,3	140	190	60	65
DML140X230X90	15,4	140	230	90	90
DML145X230X71,1	9,2	145	230	66,8	60
DML155X200X66	5	155	200	66	65
DML180X280X80	18,52	180	280	65	80
DML200X310X59	19	200	310	54	59

000181E8

000181E4

Tapered bore Taper 1:12, Taper 1:30

Ba	asic load ratings		Fatigue limit load	Design	Bearing seat	Sealing for
,	yn.	stat.	C _u			
C		C ₀				
Ν		Ν	Ν			
10	03 000	158 000	22 400	Triple row	Cylindrical	-
12	20 000	177 000	20 800	Triple row	Taper 1:12	oil
13	31 000	238 000	30 000	Four-row	Taper 1:30	-
10	03 000	158 000	22 400	Triple row	Taper 1:30	-
ç	99 000	146 000	17 700	Double row	Taper 1:12	grease
13	37 000	221 000	28 000	Double row	Cylindrical	-
15	56 000	280 000	36 500	Double row	Cylindrical	oil
15	56 000	280 000	36 500	Double row	Cylindrical	oil
14	47 000	229 000	27 000	Double row	Taper 1:12	oil
19	93 000	345 000	44 000	Double row	Taper 1:30	grease
27	75 000	495 000	64 000	Double row	Taper 1:12	-
39	90 000	540 000	71 000	Double row	Taper 1:30	-
13	39 000	280 000	30 500	Double row	Cylindrical	grease
16	62 000	315 000	38 000	Double row	Cylindrical	oil
16	62 000	315 000	38 000	Double row	Cylindrical	-
23	32 000	390 000	57 000	Double row	Taper 1:12	grease
32	20 000	560 000	71 000	Double row	Taper 1:12	grease
48	85 000	830 000	106 000	Double row	Taper 1:30	-
22	24 000	500 000	69 000	Double row	Cylindrical	-
22	24 000	500 000	69 000	Double row	Cylindrical	oil
19	91 000	335 000	39000	Double row	Cylindrical	oil
23	34 000	540 000	59 000	Double row	Cylindrical	-
28	80 000	530 000	58 000	Double row	Cylindrical	oil
30	00 000	600 000	62 000	Double row	Cylindrical	oil

Locating bearings Concentric inner and outer ring With cylindrical bore Sealed

With lip seals

Dimension table · Dimension	Dimension table · Dimensions in mm								
Designation	Mass	Dimensions				Basic load ratings			
						Radial bearing			
	m	d	D	В	С	dyn. C	stat. C ₀		
	≈kg					kN	kN		
DMF80X145X90	8	80	145	69	80	137	221		
DMF100X175X68	7	100	175	40	68	184	365		
DMF120X180X86,2	7,9	120	180	70,2	68	139	280		

		Fatigue limit load		Design	Bearing seat	Sealing
Axial bearing		Radial bearing	Axial bearing	Cylindrical		for
dyn. C	stat. C ₀	C _u	C _u	roller bearing		
Ν	Ν	Ν	Ν			
73 000	405 000	28 000	50 000	Double row	Cylindrical	oil
56 000	225 000	47 000	22 000	Double row	Cylindrical	oil
71 000	430 000	30 500	47 000	Double row	Cylindrical	oil

Tapered roller bearings

Matched pair O arrangement With cylindrical bore Open or sealed

Double row, matched pair With two spacer rings

Single-piece outer ring, matched pair of inner rings

Dimension table · Dimension	is in mm						
Designation	Mass	Dimensi	ons			Basic load r	atings
	m	d	D	В	C	dyn. C	stat. C ₀
	≈kg					N	N
TR250X80X46	1	50	80	46	37	109 000	187 000
TR255X90X52	1,8	55	90	52	41	139800	236 000
TR255X100X64,6	2	55	100	64,6	53,1	188 700	274 000
TR260X95X71,3	1,6	60	95	71,3	60,3	142 000	250 000
TR265X100X71,3	1,7	65	100	71,3	60,3	140 000	250 000
TR270X110X56	2	70	110	56	44	178 000	315 000
TR270X110X60	2	70	110	60	48	178 000	315 000
TR275X115X60	2	75	115	60	48	180 000	325 000
TR275X115X107	2,3	75	115	107	95	180 000	325 000
TR280X110X46	1,3	80	110	46	38	131 000	265 000
TR280X125X66	2,8	80	125	66	52	235 000	420 000
TR285X130X66	3,1	85	130	66	52	243 000	450 000
TR290X140X72	4	90	140	72	56	280 000	510 000
TR295X145X72	4,2	95	145	72	56	290 000	550 000
TR2100X140X57	2,6	100	140	57	47	216 000	420 000
FR2100X150X72	4,5	100	150	72	56	295 000	570 000
TBS100X175X56	6	100	175	56	56	216 000	425 000
TBS100X210X56	10,1	100	210	56	56	216 000	425 000
TR2105X145X58	2,7	105	145	58	48	219 000	435 000
TR2105X160X80	5	105	160	80	62	345 000	660 000
TR2110X150X58	3	110	150	58	48	227 000	460 000
TR2110X170X86	7,5	110	170	86	68	415 000	790 000
TR2120X165X68	4,1	120	165	68	56	300 000	610 000
TR2120X180X86	7,5	120	180	86	68	430 000	840 000
TR2130X180X74	5,2	130	180	74	60	355 000	740 000
TBS130X180,01X140	8	130	180,01	140	126	355 000	740 000
FR2130X200X100	11	130	200	100	78	560 000	1 100 000
TBS130X215X103	15	130	215	71	103	355 000	740 000
TBS130X215,02X83	13,5	130	215,02	71	83	355 000	740 000
TR2140X190X74	6	140	190	74	60	365 000	790 000
TR2150X210X86	8,5	150	210	86	70	490 000	990 000

With flange, with lip seals

5		4	4
		T.A.	nf.
p	щ	2	

Fatigue limit load	Basic bearing	Design	Bearing seat	Sealing for
Cu				
Ν				
22 000	32010-X-P5	Double row	Cylindrical	-
29 000	32011-X-P5	Double row	Cylindrical	-
34 000	32211-X-P5	Double row	Cylindrical	-
31 000	32012-X-P5	Double row	Cylindrical	-
31 000	32013-X-P5	Double row	Cylindrical	-
40 000	32014-X-P5	Double row	Cylindrical	-
40 000	32014-X-P5	Double row	Cylindrical	-
42 000	32015-X-P5	Double row	Cylindrical	-
42 000	32015-X-P5	Double row	Cylindrical	-
32 000	32916-P5	Double row, single-piece outer ring	Cylindrical	-
52 000	32016-X-P5	Double row	Cylindrical	-
56 000	32017-X-P5	Double row	Cylindrical	-
61 000	32018-XA-P5	Double row	Cylindrical	-
65 000	32019-XA-P5	Double row	Cylindrical	-
50 000	32920-P5	Double row, single-piece outer ring	Cylindrical	-
67 000	32020-X-P5	Double row	Cylindrical	-
50 000	-	Double row, single-piece outer ring	Cylindrical	-
50 000	-	Double row, single-piece outer ring	Cylindrical	-
51 000	32921-P5	Double row	Cylindrical	-
76 000	32021-X-P5	Double row	Cylindrical	-
54 000	32922-P5	Double row	Cylindrical	-
90 000	32022-X-P5	Double row	Cylindrical	-
69 000	32924-P5	Double row, single-piece outer ring	Cylindrical	-
95 000	32024-X-P5	Double row	Cylindrical	-
83 000	32926-P5	Double row	Cylindrical	-
83 000	-	Double row	Cylindrical	-
122 000	32026-X-P5	Double row	Cylindrical	-
83 000	-	Double row, single-piece outer ring	Cylindrical	oil
83 000	-	Double row, single-piece outer ring	Cylindrical	-
86 000	32928-P5	Double row	Cylindrical	-
123 000	32930-P5	Double row	Cylindrical	-

Eccentric outer ring With cylindrical or tapered bore Open or sealed

Double row Sealed on both sides

Tapered bore Taper 1:12, Taper 1:30

Dimension table · Dimensions in mm								
Designation	Mass	Dimensions						
	m	d	D	В	С	E		
	≈kg							
DMLE60X170X65	9	60	170	45	65	15		
DMLE65X160X52	5,8	65	160	36	52	16		
DMLE75X180X52	7,8	75	180	36	52	5		
DMLE99,942X180,02X73	6,6	99,942	180,02	37	73	3		
DMLE105X180X70	7	105	180	55	70	5		
DMLE120X260X74	21	120	260	60	74	5		
DMLE120X200X74	8,4	120	200	55	74	5		
DMLE120X285X74	25,5	120	285	60	74	25		
DMLE120X200X79	9	120	200	60	79	5		
DMLE120X200X79	9,7	120	200	72	79	5		
DMLE140X220X80	11,5	140	220	70	80	5		
DMLE140X230X90	16	140	230	90	90	5		
DMLE140X230X90	15	140	230	90	90	3		

With lip seals

With labyrinth seals

Basic lo	Basic load ratings		Fatigue limit load	Design	Bearing seat	Sealing for
dyn.		stat.	C _u			
C		C ₀				
Ν		Ν	Ν			
90 00	0	121000	15000	Double row	Taper 1:30	grease
90 00	0	121 000	15000	Double row	Taper 1:12	grease
99 00	0	146 000	17 700	Double row	Taper 1:12	grease
147 00	0	229 000	27 000	Double row	Taper 1:12	oil
275 00	0	495 000	64 000	Double row	Taper 1:12	-
320 00	0	560 000	71 000	Double row	Taper 1:12	grease
232 00	0	390 000	57 000	Double row	Taper 1:12	grease
320 00	0	560 000	71 000	Double row	Taper 1:12	grease
320 00	0	560 000	71 000	Double row	Taper 1:12	grease
320 00	0	560 000	71 000	Double row	Taper 1:12	-
196 00	0	345 000	40 500	Double row	Taper 1:12	oil
224 00	0	500 000	69 000	Double row	Cylindrical	oil
300 00	0	520 000	74 000	Double row	Cylindrical	oil

Eccentric intermediate ring With cylindrical or tapered bore Open or sealed

Double row

Triple row

000181F5

Dimension table · Dimensions in mm										
Designation	Mass	Dimensions								
	m	d	D	В	B ₁	С	E			
		-		-	-1	-				
	≈kg									
DML3E55X130X47,3	4	55	130	33,5	47,3	43	5			
DML3E55X135X55	3,6	55	135	40	55	49	7			
DML3E60X150X66	6	60	150	61	66	49	10			
DML3E60X170X65	8,6	60	170	45	65	47	15			
DML3E65X142X65,1	4,9	65	142	53	65,1	52	3,5			
DML3E65X150X65,1	5,7	65	150	53	65,1	52	7			
DML3E65X145X55	4,5	65	145	40	55	49	7			
DML3E65X145X55	4,5	65	145	40	55	49	4			
DML3E65X160X56	6,2	65	160	36	56	52	16			
DML3E70X147X68	5,2	70	147	54	68	59	4			
DML3E70,007X200X68	12,1	70,007	200	46	68	60	5			
DML3E75X155X55	4,9	75	155	44	55	49	3			
DML3E75X180X56	7,86	75	180	36	56	52	16			
DML3E75X175X50	4	75	175	45	50	40	10			
DML3E90X160X60	5	90	160	50	60	46	7,8			
DML3E100X175X71	5,8	100	175	44	71	51	6			
DML3E100X200X70	10	100	200	37	70	60	10			
DML3E100X200X70	9,3	100	200	37	70	56	12,7			
DML3E99,942X200,025X73	9,2	99,942	200,025	37	73	56	7			

Basi	ic load ratings		Fatigue limit load	Design		Sealing for
dyn. C		stat. C ₀	C _u			
N		N	N			
91	000	124 000	15 000	Double row	Taper 1:12	grease
103	000	158 000	22 400	Triple row	Cylindrical	-
120	000	177 000	20 800	Triple row	Taper 1:12	oil
90	000	121 000	15 000	Double row	Taper 1:30	grease
131	000	238 000	30 000	Four-row	Taper 1:30	-
131	000	238 000	30 000	Four-row	Taper 1:30	-
103	000	158 000	22 400	Triple row	Taper 1:30	-
103	000	158 000	22 400	Triple row	Taper 1:30	-
90	000	121 000	15 000	Double row	Taper 1:12	grease
126	000	195 000	25 000	Triple row	Taper 1:30	-
97	000	142 000	17 000	Double row	Cylindrical	oil
137	000	221 000	26 000	Triple row	Taper 1:30	-
99	000	146 000	17 700	Double row	Taper 1:12	grease
136	000	218 000	26 500	Triple row	Taper 1:12	-
140	000	255 000	30 000	Double row	Cylindrical	oil
86	000	143 000	19 200	Double row	Cylindrical	-
88	000	147 000	19 000	Double row	Taper 1:12	-
146	000	245 000	38 000	Double row	Taper 1:12	-
147	000	229 000	27 000	Double row	Taper 1:12	oil

Eccentric intermediate ring With cylindrical or tapered bore Open or sealed

Double row

Triple row

000181F5

Dimension table (continued) · Dimensi	ons in mm						
Designation	Mass	Dimensions					
	m	d	D	В	B ₁	С	E
	≈kg						
DML3E105X192,025X80	~Kg 10	105	192,025	73	80	58	6
DML3E105X210,025X73	12,3	105	210,025	73	70	58	15
DML3E105X210,025X80	13,2	105	210,025	73	80	58	12
DML3E105X210,025X80	12,9	105	210,025	73	80	58	12
DML3E105X210,025X95	15,2	105	210,025	73	95	58	3,5
DML3E105X230X70	14,5	105	230	55	70	60	20
DML3E110X210X75	12	110	210	71	75	58	7
DML3E110X225X75	15	110	225	71	75	58	10
DML3E120X260X74	19,2	120	260	55	74	60	20
DML3E120X260X79	20,5	120	260	60	79	60	20
DML3E120X260X79	21	120	260	72	79	60	20
DML3E120X285X74	25	120	285	60	74	60	25
DML3E125X258X91	21,7	125	258	68	91	66	17
DML3E125X258X94	22,4	125	258	68	94	66	15,25
DML3E130X270X56	15,9	130	270	52	56	52	16
DML3E130X290X56	19,6	130	290	52	56	52	24
DML3E140X240X80	14,5	140	240	70	80	60	7
DML3E140X250X80	16	140	250	70	80	60	10
DML3E140X260X83	20	140	260	74	83	64	7
DML3E170X310,025X88	30,1	170	310,025	78	88	66	5
DML3E170X310,025X88	29,8	170	310,025	78	88	66	12

Basic load ratings		Fatigue limit load	Design	Bearing seat	Sealing for
dyn. C	stat. C ₀	C _u			
Ν	Ν	Ν			
236 000	460 000	51 000	Four-row	Taper 1:30	-
193 000	345 000	44 000	Double row	Taper 1:30	grease
219 000	415 000	51 000	Four-row	Taper 1:30	grease
193 000	345 000	44 000	Double row	Taper 1:30	grease
193 000	345 000	44 000	Double row	Taper 1:30	grease
275 000	495 000	64 000	Double row	Taper 1:12	-
136000	218 000	59 000	Four-row	Taper 1:30	-
245 000	520 000	61 000	Four-row	Taper 1:30	-
232 000	390 000	57 000	Double row	Taper 1:12	grease
320 000	560 000	71 000	Double row	Taper 1:12	grease
320 000	560 000	71 000	Double row	Taper 1:12	grease
320 000	560 000	71 000	Double row	Taper 1:12	grease
320 000	560 000	68 000	Triple row	Taper 1:30	grease
320 000	560 000	68 000	Triple row	Taper 1:30	grease
290 000	50 000	72 000	Double row	Taper 1:12	-
290 000	500 000	72 000	Double row	Taper 1:12	-
199 000	355 000	40 500	Double row	Taper 1:12	oil
196 000	345 000	39 000	Double row	Taper 1:12	oil
335 000	690 000	78 000	Four-row	Taper 1:30	-
295 000	720 000	75 000	Four-row	Taper 1:30	grease
295 000	720 000	75 000	Four-row	Taper 1:30	grease

Eccentric intermediate and outer ring With cylindrical or tapered bore Open or sealed

Double row With labyrinth seals

Double row Tapered bore

Dimension table · Dimensions in r	Dimension table · Dimensions in mm									
Designation	Mass	Dimension	5							
	m	d	D	В	B ₁	С	E	E ₁		
	≈kg									
DML3D65X160X49	5,5	65	160	36	49	45	16	2		
DML3D80X170X54	7	80	170	34	54	46,5	5,5	6		
DML3D80X180X68	7,5	80	180	43	68	50	2,8	8		
DML3D105X240X80	21	105	240	60	80	68	12,7	0,5		
DML3D105X240X80	17	105	240	60	80	68	12,7	0,5		
DML3D120X235X79	21	120	235	55	79	60	5	0,5		
DML3D120X260X79	20,5	120	260	60	79	60	20	3		
DML3D120X260X79	21	120	260	72	79	60	20	3		
DML3D120X285X74	25,2	120	285	60	74	60	25	5		
DML3D130X290X97	30,2	130	290	78	97	64	20	1		

With labyrinth seals

00018211

Basic load ratings		Fatigue limit load	Design	Bearing seat	Sealing for
dyn.	stat.	C _u			
C	C ₀				
Ν	Ν	Ν			
76 500	116000	14 500	Double row	Taper 1:12	grease
120 000	186 000	28 500	Double row	Cylindrical	-
135 000	218 000	29 000	Double row	Cylindrical	-
260 000	465 000	54 000	Triple row	Taper 1:30	-
390 000	540 000	71 000	Double row	Taper 1:30	-
315 000	540 000	62 000	Double row	Cylindrical	-
320 000	560 000	71 000	Double row	Taper 1:12	grease
320 000	560 000	71 000	Double row	Taper 1:12	grease
320 000	560 000	71 000	Double row	Taper 1:12	grease
485 000	830 000	106 000	Double row	Taper 1:30	-

Two eccentric intermediate rings With cylindrical or tapered bore Open or sealed

Double row

Triple row

Dimension table · Dimensions in r	nm								
Designation	Mass	Dimensions							
	m	d	d D B B ₁ B ₂ C E E ₁						
		-	-	-	-1	-2	-	-	-1
	≈kg								
DMLD60X170X70	8,6	60	170	45	70	64,5	47	12	3
DMLD65X160X48	5	65	160	31	48	48	40	4,5	6
DMLD65X170X70	8	65	170	36	70	64,5	52	12	3
DMLD65X205X65,1/E7	11,6	65	205	53	65,1	59,5	52	7	14
DMLD65X205X65,1/E3,5	11,6	65	205	53	65,1	59,5	52	3,5	14
DMLD70,007X200X68	12	70,007	200	43	68	68	60	5	5,519
DMLD80X190X54	9	80	190	34	54	54	46,5	5,5	6
DMLD90X210X54	10	90	210	37	54	54	46,5	6	10
DMLD100X240X70	15,5	100	240	37	70	60	50	10	3
DMLD120X300X80	29	120	300	46	80	72	64	2,8	13
DMLD125X305X94	32	125	305	68	94	71	60	17	9

Four-row Tapered bore

Double row With labyrinth seals

Basic lo			Fatigue limit load	Design	Bearing seat	Sealing for
dyn. C		stat. C ₀	C _u			
Ν		Ν	Ν			
90 000		121000	15000	Double row	Taper 1:30	grease
90 000		121 000	15 000	Double row	Taper 1:12	-
90 000		121000	15 000	Double row	Taper 1:12	grease
131 000		238 000	30 000	Four-row	Taper 1:30	-
131 000		238 000	30 000	Four-row	Taper 1:30	-
97 000		142 000	17 000	Double row	Cylindrical	oil
120 000		186 000	28 500	Double row	Cylindrical	-
140 000		224 000	36 000	Double row	Cylindrical	-
88 000		147 000	19000	Double row	Taper 1:12	-
232 000		390 000	57 000	Double row	Taper 1:12	-
320 000		560 000	68 000	Triple row	Taper 1:30	grease

Axial bearings for printing machinery

Axial bearings for printing machinery

		Page
Product overview	Axial bearings for printing machinery	100
Features	Axial cylindrical roller bearings, axial needle roller bearings	101
	Angular contact ball bearings	102
	Axial angular contact ball bearings	103
	Sealing	104
	Lubrication	104
	Suffixes	104
Design and safety guidelines	Design of adjacent parts	105
Accuracy		105
Dimension tables	Axial cylindrical roller bearings, axial needle roller bearings, double direction, externally or internally centred	106

Product overview Axial bearings for printing machinery

Axial cylindrical roller ZARA ZARI bearings 0001837A 0001837E Axial needle roller bearings ZAXA 00018380 Angular contact ball bearings 72..-BE-2RS Single row Axial angular contact ball bearings ZKLF...-2RS

0001867

Axial bearings for printing machinery

Features In conjunction with non-locating bearings, axial bearings are used to provide axial support for main cylinders. The bearings can support forces in both directions and are generally clearance-free. Depending on the requirements of the printing machine, axial cylindrical roller bearings, axial needle roller bearings or angular contact ball bearings are used.

Further information

Axial cylindrical roller bearings, axial needle roller bearings

Detailed information is given in Catalogue HR 1, Rolling Bearings.http://medias.schaeffler.de.

Axial cylindrical roller bearings comprise axial cages with needle or cylindrical rollers, housing locating washers GS, shaft locating washers WS and an intermediate washer for internal or external centring ZS, *Figure 1*.

The housing locating washers can be externally centred, the shaft locating washers can be internally centred. Depending on the design, they can be radially displaced relative to each other by the dimension s, see dimension table. The shaft and housing locating washer have a ground outside surface.

Figure 1 Axial cylindrical roller bearing, axial needle roller bearing

Preload

The ready-to-fit bearing units are supplied in some cases with an adjusted inner ring.

In the design with an adjusted inner ring, the bearing units are clearance-free.

Application

The axial bearings are particularly suitable for supporting axial forces in main cylinder bearing arrangements. They have very high axial rigidity and can support only axial forces in both directions.

Axial bearings for printing machinery

Angular contact ball bearings

Single row angular contact ball bearings correspond to DIN 628-1 and are available in open or sealed designs, *Figure 2*. Bearings of the universal design have the suffix UL or UO and can be fitted in either an X or O arrangement, see table, page 104.

Axial angular contact ball bearings

Axial angular contact ball bearings ZKLF are self-retaining, double row angular contact ball bearings with a contact angle of 60° in an O arrangement, *Figure 3*.

The inner ring is adjusted so that it is clearance-free. The contact angle of 60° gives high axial rigidity.

The thick-walled outer ring allows direct screw mounting on the adjacent construction. This allows particularly simple mounting.

Axial angular contact ball bearings are high precision bearings:

- single-piece, thick-walled outer ring with lubrication and fixing holes
- two-piece inner ring with ball and cage assemblies
- either lip or gap seals.

Figure 3 Axial angular contact ball bearing

00018690

Axial bearings for printing machinery

- Sealing Axial bearings for printing machinery are sealed either by fitting seals in the adjacent construction or, in the case of angular contact ball bearings with the suffix 2RS, by lip seals on both sides. Contact RS seals are suitable for giving protection against dust, contamination and damp atmospheres.
- **Lubrication** Axial cylindrical roller bearings and axial needle roller bearings can be relubricated in some cases via the inner ring or the intermediate washer.

Angular contact ball bearings and axial angular contact ball bearings with lip seals on both sides are greased with a high quality grease and are lubricated for life. In certain applications, relubrication may be necessary. In this case, Arcanol MULTITOP is suitable.

Suffixes Suffixes for available designs: see table.

Available designs

Suffix	Description	Design
UL	Universal design for fitting in pairs, bearing pair has slight preload in O and X arrangement	Standard
UO	Universal design for fitting in pairs, bearing pair is clearance-free in O and X arrangement	

Design and safety guidelines	
Design of adjacent parts	Axial bearing washers must be fully supported over their entire surface. The abutment shoulders should be rigid, flat and perpendicular to the axis of rotation.
Accuracy	Geometrical tolerances of axial rolling bearings DIN 620-3 (ISO 199), see page 28.

Axial cylindrical roller bearings Axial needle roller bearings

Double direction Externally centred or internally centred

Dimension table · Dimensions in mm								
Designation			Mass	Dimensions				
Series ZARA	Series ZARI	Series ZAXA	m	d	D	d ₁		
			≈kg					
-	ZARI20X47X24	_	0,2	20	47	32		
ZARA25X71,5X27	-	-	0,5	25	71,5	52		
ZARA25X104X27	-	-	0,8	25	104	52		
-	ZARI26X52X25,5	-	0,3	26	52	32		
-	ZARI31X52X25	-	0,2	31	52	37		
ZARA40X100X34,5	-	-	0,8	40	100	65		
ZARA40X100X44	-	-	1,15	40	100	65		
ZARA40X130X46	-	-	1,75	40	130	70		
ZARA45X84X31,5	-		0,6	45	84	70		
-	-	ZAXA50X102X24,5	0,8	50	102	70		
ZARA60X104X37	-	-	0,96	60	104	90		
ZARA60X120X39	-	-	1,2	60	120	90		
ZARA60X165X48	-	-	3,4	60	165	95		
ZARA60X165X56	-	-	3,5	60	165	95		
ZARA60X170X67,5	-	-	5,9	60	170	125		
ZARA60X230X40	-	-	4,3	60	230	90		
-	ZARI70X100X24	-	0,45	70	100	82		
-	ZARI70X110X25	-	0,7	70	110	80,1		
-	-	ZAXA70X119X40	1,68	70	119	105		
-	-	ZAXA75X119X35,5	1,2	75	119	100		
-	-	ZAXA75X145X30,5	1,3	75	145	100		
ZARA75X180X50	-	-	4,7	75	180	110		
ZARA75X185X43	-	-	4,7	75	185	110		
-	-	ZAXA85X150X29,75	1,3	85	150	110		
-	ZARI100X130X25	-	0,6	100	130	110,5		
-	-	ZAXA100X154X44	2,74	100	154	135		
-	-	ZAXA140X199X54	4,84	140	199	178		

			Basic load rati	ngs	Fatigue
					limit load
S	B _{tot}	B ₁	dyn. C	stat. C ₀	C _u
			N	N	N
_	24	8	35 500	86 000	8 000
2,5	27	10	39 000	101 000	9 200
2,5	27	10	39 000	101 000	9 200
-	25,5	7	35 500	86 000	8 000
-	25	8	34 500	86 000	8 000
2	34,5	10,5	59 000	163 000	14700
2,5	44	20	59 000	163 000	14700
2	46	16	61 000	177 000	16 200
0,5	31,5	11,5	61 000	177 000	16 200
1	24,5	10,5	32 000	143 000	16000
0,5	37	12,5	107 000	340 000	30 500
1	39	10	107 000	340 000	30 500
0,5	48	18	111 000	365 000	33 000
0,5	56	18	111 000	365 000	33 000
2,5	67,5	18	217 000	660 000	65 000
2	40	16	43 000	137 000	13 700
-	24	7	28 000	59 000	13 500
-	25	5	36 800	67 700	21 600
0,5	40	16	55 000	265 000	31 500
0,5	35,5	16	55 000	265 000	31 500
1,5	30,5	11	55 000	265 000	31 500
1	50	18	58 000	290 000	34 500
1	43	18	58 000	290 000	34 500
0,5	29,75	10,25	58 000	290 000	34 500
_	25	7	38 500	158 000	15 200
0,5	44	22	91 000	560 000	63 000
0,5	54	25	138 000	900 000	88 000

		Page
Product overview	Other products	110
Features	Track rollers	112
	Polygon bearings for printing machinery	113
	Precision locknuts	114
	Spherical roller bearings	114
	Crossed roller bearings	114
Dimension tables	Yoke type track rollers, with axial guidance, sealed	116
	Cylindrical roller stud type track rollers, with axial guidance	118

Yoke type track rollers

Stud type track rollers

KR52..-2RS

Ball bearing track rollers

LR50, LR52, LR53

Printing machine bearing unit Polygon bearings

Precision locknuts

Spherical roller bearings

222..-E1-K

ZM

Crossed roller bearings

Features	In addition to the special products, the Schaeffler Group offers an extensive range of standard products for printing machinery.						
Further information	 Detailed information is given in Catalogue HR 1, Rolling Bearings. http://medias.schaeffler.de. 						
Ball bearing track rollers	Ball bearing track rollers correspond in their design to deep groove or angular contact ball bearings but have thick-walled outer rings with a crowned outside surface. They can support axial forces in both directions as well as high radial loads. Ball bearing track rollers are available with and without a stud. Ball bearing track rollers without a stud are mounted on a shaft or stud.						
Coating with Triondur	In the case of many special stud type track rollers, the outside surface is coated, <i>Figure 1</i> . This coating is particularly suitable for gripper shaft applications in sheetfed offset printing machines.						
<i>Figure 1</i> Ball bearing track roller LR, with Triondur coating	<image/> <page-header></page-header>						
	 The features of Triondur are as follows: excellent anti-wear protection very low friction very high tribological and mechanical load carrying capacity good emergency running characteristics. 						
Sealing	The bearings are sealed by means of lip seals or gap seals.						
Lubrication	Ball bearing track rollers are greased using a lithium soap grease. Double row ball bearing track rollers can be relubricated via the inner ring.						

Polygon bearings for printing machinery

Polygon bearings are ready-to-fit bearing units, *Figure 2*:

- They are ready-to-fit bearing units. The assembly includes:
 inner ring with cylindrical bore with rib-guided cylindrical rollers and double row cage (non-locating bearing).
 Alternatively, double row tapered roller bearings in O arrangement as locating bearing
 - thick-walled outer ring with lubrication and fixing holes as well as polygonal outside surface
- Polygon bearings are particularly suitable for the bearing arrangement of cylinders in printing machines with very large radial traverse distances
- They are clearance-free after mounting.

Figure 2 Polygon bearing

Precision locknuts	Precision locknuts are used where high axial forces must be supported and high runout accuracy and rigidity are required. The thread and the axial face of the locknut in contact with the rolling bearing are produced in a single clamping operation. This allows very high runout accuracy to be achieved. Locknuts ZM are secured against rotation by means of two radially acting locking pegs.
Spherical roller bearings	Spherical roller bearings are double row, self-retaining units comprising solid outer rings with a concave raceway, solid inner rings and barrel rollers with cages. The designs normally fitted in printing machinery have the following characteristics: X-life grade
	 inner ring with tapered bore increased accuracy to tolerance class P5 reduced internal clearance.
Crossed roller bearings	Crossed roller bearings XSU are units comprising inner and outer rings, rolling elements and spacers. Due to the X arrangement of the rolling elements, they can support axial and radial loads as well as tilting moment loads.
	The crossed roller bearings without teeth have very high rigidity and running accuracy. They are available preloaded or with clearance.
	The bearing rings are screw mounted directly to the adjacent construction and are therefore very easy to fit.
	Special geometries such as cams on the outer ring are possible by agreement.

Yoke type track rollers

With axial guidance Sealed

PWTR..-2RS (optimised INA profile)

Dimension table · Dimensions in mm									
Designation		Mass	Dimensio	ns					
		m	D	d	В	C	d ₂	r	r ₁
	X-life	≈kg							
PWTR15-2RS	XL	99	35	15	19	18	20	0,6	0,3
PWTR17-2RS	XL	147	40	17	21	20	22	1	0,5
PWTR1542-2RS	XL	158	42	15	19	18	20	0,6	0,3
PWTR1747-2RS	XL	220	47	17	21	20	22	1	0,5
PWTR20-2RS	XL	245	47	20	25	24	27	1	0,5
PWTR2052-2RS	XL	321	52	20	25	24	27	1	0,5
PWTR25-2RS	XL	281	52	25	25	24	31	1	0,5
PWTR2562-2RS	XL	450	62	25	25	24	31	1	0,5
PWTR30-2RS	XL	465	62	30	29	28	38	1	0,5
PWTR3072-2RS	XL	697	72	30	29	28	38	1	0,5
PWTR35-2RS	XL	630	72	35	29	28	44	1,1	0,6
PWTR3580-2RS	XL	836	80	35	29	28	44	1,1	0,6
PWTR40-2RS	XL	816	80	40	32	30	51	1,1	0,6
PWTR45-2RS	XL	883	85	45	32	30	55	1,1	0,6
PWTR4090-2RS	XL	1129	90	40	32	30	51	1,1	0,6
PWTR50-2RS	XL	950	90	50	32	30	60	1,1	0,6
PWTR45100-2RS	XL	1 396	100	45	32	30	55	1,1	0,6
PWTR50110-2RS	XL	1 690	110	50	32	30	60	1,1	0,6

Basic load ratings	5			Speed
dyn. C _{rw}	stat. C _{0rw}	dyn. F _{r per}	stat. F _{Or per}	n _{D G}
Ν	Ν	Ν	Ν	min ⁻¹
12 600	14 600	10700	14 600	6 000
14 300	17 900	16 500	17 900	5 000
14 700	16 200	16 200	16 200	6 000
15 900	18 400	18 400	18 400	5 000
24 500	30 500	20 7 00	30 500	3 800
27 000	35 000	31 000	35 000	3 800
25 000	33 000	21 800	33 000	3 800
30 000	42 500	42 500	42 500	3 800
35 000	45 500	29 000	45 500	2 200
41 000	56 000	54 000	56 000	2 200
38 500	54 000	39 000	54 000	1 800
43 500	63 000	59 000	63 000	1 800
45 000	61 000	39 500	61 000	1 500
45 500	63 000	41 000	63 000	1 300
52 000	75 000	67 000	75 000	1 500
46 000	66 000	42 000	66 000	1 100
56 000	85 000	85 000	85 000	1 300
59 000	94 000	94 000	94 000	1 100

Cylindrical roller stud type track rollers

With axial guidance

PWKR..-2RS (optimised INA profile)

Dimension table · Dim	ensions i	in mm											
Without eccentric colla	ar	With eccentric collar			Dim	iensi	ons						
Designation	Mass	Designation	Mass		D	d_1	В	B ₁	B ₂	B ₃	С	C ₁	r
	m		m	X-life									
PWKR22X10X28,8	≈g 45	_	≈g _	×	22	10	28,8	16	12,8	6	15	0,8	0,6
PWKR26X10X37,5	60	-	_	_	26	10	37,5	16	21,5	9,15	15	0,6	0,3
PWKR28X12X36,15	83	_	-	_	28	10	36,15	18,15	18	6,5	17	0,7	0,3
PWKR28X12X39,5	82	_	_	_	28	10	39,5	18,15	21,35	9	17	0,6	0,3
PWKR30X12X51	100	_	-	_	30	10	51	22	29	8	19	3	0,6
PWKR35-2RS	164	_	_	XL	35	16	52	19,6	32,5	7.8	18	0.8	0,6
PWKR35X16X39	145	_	-	_	35	16	39	19	20	10	18	1	0,6
PWKR35X16X42	160	_	_	_	35	16	42	22	20	10	21	1	0,6
PWKR35X16X43,5	153	-	-	-	35	16	43,5	19,63	23,87	7,82	18	0,9	0,6
PWKR35X16X63	160	-	_	_	35	16	63	19	44	7,5	18	1	0,6
-	-	PWKRE35-2RS	177	XL	35	16	52	22,6	29,5	-	18	3,8	0,6
PWKR40-2RS	242	-	-	XL	40	18	58	21,6	36,5	8	20	0,8	1
PWKR40X18X41,85	220	-	-	-	40	18	41,85	21,85	20	10	20	1	0,6
PWKR40X18X44,5	240	-	-	-	40	18	44,5	24,5	20	10	23,5	0,5	1
PWKR40X18X52,5	280	-	-	-	40	18	52,5	23,5	29	8	22	0,8	1,1
PWKR40X18X55,5	310	-	-	-	40	18	55,5	26,5	29	8	25	0,8	1,1
-	-	PWKRE40-2RS	258	XL	40	18	58	24,6	33,5	-	20	3,8	1
-	-	PWKRE40X18X53	236	-	40	18	53	21,65	31,35	8	20	0,8	1
-	-	PWKRE40X18X55,5	310	-	40	18	55,5	26,5	29	8	25	0,8	1,1
PWKR47-2RS	380	PWKRE47-2RS	400	XL	47	20	66	25,6	40,5	9	24	0,8	1
PWKR47X20X51	400	-	-	-	47	20	51	29,7	21,3	-	28	0,8	1
PWKR52-2RS	450	PWKRE52-2RS	470	XL	52	20	66	25,6	40,5	9	24	0,8	1
PWKR52X20X76,5	620	-	-	-	52	20	76,5	36	40,5	15	34,5	0,8	1
PWKR62-2RS	795	PWKRE62-2RS	824	XL	62	24	80	30,6	49,5	11	28	1,3	1
PWKR72-2RS	1 0 2 0	PWKRE72-2RS	1050	XL	72	24	80	30,6	49,5	11	28	1,3	1,1
PWKR80-2RS	1 600	PWKRE80-2RS	1670	XL	80	30	100	37	63	15	35	1	1,1
PWKR90-2RS	1 960	PWKRE90-2RS	2020	XL	90	30	100	37	63	15	35	1	1,1

Design with gap seals or seal 2RS. The outside surface can be crowned, cylindrical or can have the optimised INA profile.

PWKRE..-2RS (optimised INA profile)

PWKR¹⁾

								Basic loa	ad ratings	i		Drive fit lubrication nipple	Tight- ening torque	Speed
d_2	d3	G	l _G	W		Eccentric d collar		dyn.	stat.	dyn.	stat.		M _A	n _{D G}
					d _e	B _e	e	C _{rw} N	C _{Orw} N	F _{rper} N	F _{Or per} N		Nm	min ⁻¹
12	2,5	-	-	-	-	-	-	8 4 0 0	7 000	4 500	7 000	-	-	-
17,46	2	-	-	-	-	-	-	9 500	8 200	4750	8 200	-	-	-
17,5	2	-	-	4	-	-	-	12600	10900	5 200	10 900	-	-	-
17,5	2	-	-	-	-	-	-	12600	10900	5 200	10 900	-	-	-
18,3	3	M12X1,5	13	6	-	-	-	10700	9 700	3 600	9 700	NIPA1X4,5	-	-
20	3	M16X1,5	17	8	-	-	-	12 600	14 600	10700	14 600	NIPA2X7,5	58	6 0 0 0
24	2,5	-	-	-	-	-	-	16300	15 300	8 400	15 300	-	-	-
24	2,5	-	-	-	-	-	-	18100	17 500	8 800	17 500	-	-	-
20	3	M16X1,5	8,5	8	-	-	-	11 600	11 300	9 400	11 300	NIPA2X7,5	58	-
24	2,5	-	-	-	-	-	-	16300	15 300	8 400	15 300	-	-	-
27,6	-	M16X1,5	17	8	20	12	1	12 600	14 600	10 700	14 600	NIPA2X7,5	58	6 0 0 0
22	3	M18X1,5	19	8	-	-	-	14 300	17 900	16 500	17 900	NIPA2X7,5	87	5 000
27	3	-	-	-	-	-	-	19700	19800	11 000	19800	-	-	-
22	3	-	-	-	-	-	-	20 1 00	24 100	12 600	24 100	-	-	-
24,7	3	M18X1,5	11,5	8	-	-	-	19700	22800	15 000	22 800	-	-	-
24,7	3	M18X1,5	11,5	8	-	-	-	24700	30 500	20 700	30 500	-	-	-
30	-	M18X1,5	19	8	22	14	1	14 300	17 900	16 500	17 900	NIPA2X7,5	87	5 000
27	3	M18X1,5	14	8	-	-	0,38	18 300	18100	12 000	18 100	-	-	-
24,7	3	M18X1,5	11,5	8	-	-	0,35	24700	30 500	20700	30 500	-	-	-
27	4	M20X1,5	21	10	24	18	1	24 500	30 500	20700	30 500	NIPA2X7,5	120	3 800
27	3	-	-	-	-	-	-	30 500	39 500	23 100	39 500	DIN 71412-C M6	-	-
31	4	M20X1,5	21	10	24	18	1	25 000	33 000	21 800	33 000	NIPA2X7,5	120	3 800
31	4	M20X1,5	16	10	-	-	-	38 000	54000	26 000	54 000	NIPA2X7,5	120	-
38	4	M24X1,5	25	14	28	22	1	35 000	45 500	29 000	45 500	NIPA3X9,5	220	2 200
44	4	M24X1,5	25	14	28	22	1	38 500	54000	39 000	54 000	NIPA3X9,5	220	2 200
47	4	M30X1,5	32	14	35	29	1,5	56000	79 000	60 000	79 000	NIPA3X9,5	450	1 800
47	4	M30X1,5	32	14	35	29	1,5	62 000	92 000	92 000	92 000	NIPA3X9,5	450	1 800

Addresses

Germany

Schaeffler Technologies GmbH & Co. KG Industriestraße 1–3 91074 Herzogenaurach Germany Tel. +(49) 91 32 / 82-0 Fax +(49) 91 32 / 82-4950 info.machine-tools@schaeffler.com

Schaeffler Technologies GmbH & Co. KG Georg-Schäfer-Straße 30 97421 Schweinfurt Germany Tel. +(49) 97 21 / 91 0 Fax +(49) 97 21 / 91 34 35 info.machine-tools@schaeffler.com

Austria

Schaeffler Austria GmbH Ferdinand-Pölzl-Straße 2 2560 Berndorf-St. Veit Austria Tel. +43 2672 202-0 Fax +43 2672 202-1003 info.at@schaeffler.com

Canada

Schaeffler Canada Inc. Canada Oakville 2871 Plymouth Drive Oakville, ON L6H 5S5 Canada Tel. +(1) 905 / 8 29 27 50 Tel. +(1) 800-263-4397 Toll Free Fax +(1) 905 / 8 29 25 63 info.ca@schaeffler.com

China

Schaeffler Holding (China) Co., Ltd. No. 1 Antuo Road (west side of Anhong Road) Anting, Jiading District 201804 Shanghai China Tel. +86 21 3957 6500 Fax +86 21 3957 6600 www.schaeffler.cn Schaeffler Trading (Shanghai) Co., Ltd. Beijing Branch RM 2801, Nexus Center, No. 19 A East 3rd Ring Road North, Chaoyang District 100020 Beijing China Tel. +86 10 6515 0288 Fax +86 10 6512 3433 info.cn-beijing@Schaeffler.com

Schaeffler (China) Co., Ltd. 18 Chaoyang Road, Taicang Jiangsu Province 215400 Taicang , Jiangsu China Tel. +86 512 5395 7700 Fax +86 512 5357 4064 info-cn@schaeffler.com

Czech Republic

Schaeffler CZ s.r.o. Průběžná 74a 100 00 Praha 10 Czech Republic Tel. +420 267 298 111 Fax +420 267 298 110 info.cz@schaeffler.com

Denmark

Schaeffler Danmark ApS Jens Baggesens Vej 90P 8200 Århus N Denmark Tel. +(45) 70 15 44 44 Fax +(45) 70 15 22 02 info.dk@schaeffler.com

France

Schaeffler France 93, route de Bitche, BP 30186 67506 Haguenau France Tel. +(33) 3 88 63 40 40 Fax +(33) 3 88 63 40 41 info.fr@schaeffler.com

Great Britain

Schaeffler (UK) Ltd Forge Lane, Minworth Sutton Coldfield West Midlands B76 1AP Great Britain Tel. +(44) 121 3 13 58 70 Fax +(44) 121 3 13 00 80 info.uk@schaeffler.com

India

FAG Bearings India Limited Maneja Vadodara 390 013 India Tel. +91 265 26426-51/-52 Fax +91 265 2 63 88-04/-10 ravinder.mathur@schaeffler.com

FAG Bearings India Limited # 18, Gr. Floor, Wst View 77, R.V. Road, Basavanagudi Bangalore 560 004 India Tel. +91 80 2657 5120/-4866 Fax +91 80 26574866 vernon.rego@schaeffler.com

INA Bearings India Pvt. Ltd. Site No. 1, Sri Nrusimha Towers, First Floor, Amruthnagar Main Road Next to Sub-registrar's Office, Konanakunte Bangalore, 560 062 India Tel. +91 80 4260 6999 Fax +91 80 4260 6922 Sales.bangalore@schaeffler.com

INA Bearings India Pvt. Ltd. Plot No. A-3 Talegaon Industrial & Floriculture Park Village Ambi, Navalakha Umbre, Taluka Maval Pune 410 507 India Tel. +91 20 306104104 Fax +91 20 30614308 info.ina.in@schaeffler.com

Italy

Schaeffler Italia S.r.l. Strada Provinciale 229 Km 17 28015 Momo Italy Tel. +(39) 3 21 / 92 92 11 Fax +(39) 3 21 / 92 93 00 info.it@schaeffler.com

Japan

Schaeffler Japan Co., Ltd. New Stage Yokohama 1-132, Shinurashima-cho, Kanagawa-ku, Yokohama, 221-0031, Japan Tel. +81 45 274 8211 Fax +81 45 274 8221 info-japan@schaeffler.com

Netherlands

Schaeffler Nederland B.V. Gildeweg 31 3771 NB Barneveld Netherlands Tel. +(31) 342 / 40 30 00 Fax +(31) 342 / 40 32 80 info.nl@schaeffler.com

Russia

Schaeffler Russland GmbH Leningradsky Prospekt 47, Bau 3 Business-Center Avion 125167 Moscow Russia Tel. +7 495 7 37 76 60 Fax +7 495 7 37 76 61 info.ru@schaeffler.com

Slovak Republic

Schaeffler Slovensko, spol. s.r.o. Ulica Dr. G. Schaefflera 1 02401 Kysucké Nové Mesto Slovak Republic Tel. +(421) 41 / 4 20 59 11 Fax +(421) 41 / 4 20 59 18 info.sk@schaeffler.com

Spain

Schaeffler Iberia, s.l.u. Polígono Ind. Pont Reixat 08960 Sant Just Desvern Spain Tel. +(34) 93 / 4 80 34 10 Fax +(34) 93 / 3 72 92 50 info.es@schaeffler.com

Sweden

Schaeffler Sverige AB Charles gata 10 195 61 Arlandastad Sweden Tel. +(46) 8 / 59 51 09 00 Fax +(46) 8 / 59 51 09 60 info.se@schaeffler.com

Switzerland

HYDREL GmbH Badstrasse 14 8590 Romanshorn Switzerland Tel. +(41) 71 / 4 66 66 66 Fax +(41) 71 / 4 66 63 33 info.ch@schaeffler.com

USA

Schaeffler Group USA Inc. 308 Springhill Farm Road Fort Mill, SC 29715 USA Tel. +1 803 548 8500 Fax +1 803 548 8599 info.us@schaeffler.com

Design brief for cylinder bearing arrangements in printing machinery

Contact informat	ion		
Date			
Company			
Contact			
Department			
Street			
Post code, town			
e-mail			
Telephone			

Machine designation

Cylinder designation

Geometrical data

Design brief for cylinder bearing arrangements in printing machinery

Machine designation				Cylinder des	ignation			
Bearing lubrication data Lubrication	Oil				DB	earing 1	ם Bea	ring 2
	Gre	ease:				-	🗅 Bea	-
Identifying data of lubricant						0		0
		(viscosity, o	designa	ation, where de	efined)			
Environmental data Sealing against contaminati	on	in adjace	nt cor	struction	o in	ntegrated	l in bearir	ıg
Sealing method								
Bearing installation data					_			
Shaft seat		Cylindrical		Tapered		-		
Mounting		Cold mounting	g or [Housing I	pore heated, bea	aring coo	led	
			[Bearing in	nner ring heated			
Materials		Shaft			🗅 Steel	or 🗆	l	
		Housing			🗆 GG25	or 🗆		
Surface quality		Shaft seat						
		Housing bore						
Diameter tolerance		Shaft seat, ho	using	bore				
Operating clearance required	d							

Machine designation

Please state duty cycle if available! Symbols, units and definitions, see figure for geometrical data.

Inherent mass		Cylinder speed n	
of cylinder	kg	(plus or minus sign	min ⁻¹
(including gear wheel)	 0	for direction of rotation)	

Drive 1

Driven cylinder	Driving cylinder	
Power to be transmitted		kW
or torque to be transmitted		Nm
Pitch circle diameter		mm
Operating mesh angle α_n		o
Inclination angle β		o
Bearer ring load F _{S1}		N (if available)
Distributed load q ₁		N/mm (if available)

Drive 2

	Driven cylinder	Driving cylinder		
	Power to be transmitted		kW	
	or torque to be transmitted		Nm	
	Pitch circle diameter		mm	
	Operating mesh angle α_n		0	
	Inclination angle β		0	
	Bearer ring load F _{S2}		Ν	(if available)
	Distributed load q ₂		N/mm	(if available)
ad	linder axial mm j ustment mm available) radial mm	Bearing position 1 Eccentric dimen Bearing position 2 Eccentric dimen		mm mm
Re	quisite bearing life			

Schaeffler Technologies GmbH & Co. KG

 Industri=straße 1 – 3

 91074 = rogenaurach

 German

 Internet www.ina.com

 E-mail info@schaeffler.com

 In German

 Phone 0180 5003872

 Fax 0180 5003873

 From other countries:

 Phone +49 9132 82-0

 Fax +49 9132 82-4950

FAG

Schaeffler Technologies GmbH & Co. KG

Georg-Schäfer-Straße 30 97421 Schweinfurt Germany Internet www.fag.com E-mail FAGinfo@schaeffler.com In Germany: Phone 0180 5003872 Fax 0180 5003873 From other countries: Phone +49 9721 91-0 Fax +49 9721 91-3435 Every care has been taken to ensure the correctness of the information contained in this publication but no liability can be accepted for any errors or omissions. We reserve the right to make technical changes.

© Schaeffler Technologies GmbH & Co. KG Issued: 2014, April

This publication or parts thereof may not be reproduced without our permission. TPI 222 GB-D